共 50 条
Singular Type Trudinger-Moser Inequalities with Logarithmic Weights and the Existence of Extremals
被引:1
作者:
Zhao, Huimin
[1
]
Guo, Yongqiang
[1
]
Shen, Yansheng
[1
]
机构:
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
关键词:
Singular Trudinger-Moser inequalities;
logarithmic weights;
extremal functions;
UNBOUNDED-DOMAINS;
ADAMS INEQUALITY;
CONSTANTS;
EQUATION;
D O I:
10.1007/s00009-023-02582-0
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
n this paper, we study the existence of extremals for thefollowing singular critical Trudinger-Moser inequality with logarithmicweights:supu is an element of W1,n0,r(B,omega beta),& Vert;u & Vert;omega beta <= 1 integral Bexp(alpha n,beta,sigma|u|n(n-1)(1-beta))|x|sigma dx<infinity, where B is the unit ball inRn,beta is an element of[0,1),sigma is an element of[0,n),alpha n,beta,sigma=(n-sigma)[omega 1n-1n-1(1-beta)]11-beta,W1,n0,r(B, omega beta) denotes the radial weighted Sobolevspace with the norm & Vert;u & Vert;omega beta=(integral B|del u|n omega beta(x)dx)1n,omega beta(x)=(loge|x|)beta(n-1).Moreover, form>0, we establish a singular supercritical Trudinger-Moser inequality with logarithmic weightssupu is an element of W1,n0,r(B,omega beta),& Vert;u & Vert;omega beta <= 1 integral Bexp((alpha n,beta,sigma+|x|m)|u|n(n-1)(1-beta))|x|sigma dx<infinity,and prove the existence of its extremal functions
引用
收藏
页数:15
相关论文
共 50 条