Fracture behavior of thick-section weldment in Fe-12Cr-12Ni-10Mn-0.24N stainless steel at liquid helium temperature

被引:0
|
作者
Y. Shindo
K. Horiguchi
机构
[1] Tohoku University,the Department of Materials Processing, Graduate School of Engineering
关键词
Fracture Toughness; Material Transaction; Weld Metal; Austenitic Stainless Steel; Liquid Helium Temperature;
D O I
暂无
中图分类号
学科分类号
摘要
Type JJ1, a nitrogen-strengthened austenitic stainless steel (Fe-12Cr-12Ni-10Mn-0.24N), is emerging as the preferred structural material for superconducting fusion magnet casings to operate at liquid helium temperature (4 K). This article describes an examination of the cryogenic fracture behavior of thick-section (200 mm) weldment in JJ1 forged stainless-steel plate. The compact tension geometry was used for the elastic-plastic fracture toughness tests at 4 K. The through-thickness fracture toughness was investigated with particular attention to the influence of the nitrogen and inclusion contents. The magnitude of the 4-K fracture toughness decreased with increasing inclusion content. In addition to fracture toughness data, temperature rise near the crack tip during fracture was measured. Significant adiabatic heating occurred, and internal temperature rises up to 52 K were reported.
引用
收藏
页码:3797 / 3802
页数:5
相关论文
共 44 条
  • [21] High temperature cyclic oxidation behavior of a low manganese Fe12Mn9Cr5Si4Ni-NbC shape memory stainless steels
    de Sousa Malafaia, Artur Mariano
    da Silva, Rodrigo
    Della Rovere, Carlos Alberto
    Baldan, Renato
    Suarez-Fernandez, Lucia
    Cabrera-Marrero, Jose-Maria
    de Oliveira, Marcelo Falcao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 857
  • [22] HELIUM RELEASE FROM 12Cr18Ni10Ti STAINLESS STEEL AFTER IMPACT OF STEADY STATE GLOW DISCHARGE He PLASMA
    Glazunov, G. P.
    Bondarenko, M. N.
    Konotopskiy, A. L.
    Garkusha, I. E.
    Maznichenko, S. M.
    Tarasov, I. K.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2021, (05): : 32 - 36
  • [23] Precipitates in an isothermally aged Fe-18Cr-12Mn-0.04C-0.48N high-nitrogen austenitic stainless steel
    Shi Feng
    Wang Lijun
    Cui Wenfang
    Ren Yaping
    Li Hongxiao
    Liu Chunming
    RARE METALS, 2007, 26 : 185 - 190
  • [24] High Temperature Deformation Behavior of Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N Low-nickel Type Duplex Stainless Steel
    Qian H.
    Yang Y.
    Cao J.
    Su Y.
    Cailiao Daobao/Materials Reports, 2019, 33 (06): : 2040 - 2046
  • [25] Effect of Solution Treatment Temperature on Impact Toughness (Room Temperature and 77 K) of a 12Cr–10Ni Martensitic Precipitation Hardenable Stainless Steel
    Anoop C.R.
    Prakash A.
    Narayana Murty S.V.S.
    Samajdar I.
    Metallography, Microstructure, and Analysis, 2018, 7 (04) : 379 - 386
  • [26] Fatigue behavior test and S-N curve verification for 0Cr18Ni12Mo2Ti austenitic stainless steel
    Sun, Weiming
    Zhang, Kangda
    Guo, Anji
    Hedongli Gongcheng/Nuclear Power Engineering, 1998, 19 (04): : 360 - 364
  • [27] Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe-18Cr-10Mn-N austenitic stainless steel
    Moon, Joonoh
    Ha, Heon-Young
    Lee, Tae-Ho
    MATERIALS CHARACTERIZATION, 2013, 82 : 113 - 119
  • [28] Investigation of the high-temperature oxidation behavior of Fe-14Cr-9Mn-2.5Ni austenitic stainless steel in N2-21 vol%O2 environment
    Su, Minghua
    Zhao, Jianhua
    Gu, Cheng
    CORROSION SCIENCE, 2023, 220
  • [29] High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C
    Valentyn Tsisar
    Zhangjian Zhou
    Olaf Wedemeyer
    Aleksandr Skrypnik
    Jürgen Konys
    Carsten Schroer
    High Temperature Corrosion of Materials, 2024, 101 : 589 - 602
  • [30] High-Temperature Corrosion Behavior of Fe-18Ni-12Cr-2.9Al and Fe-18Ni-12Cr-2.3Al-Nb-C Austenitic Steels Depending on Dissolved Oxygen Concentration in Static Liquid Pb at 700 °C
    Tsisar, Valentyn
    Zhou, Zhangjian
    Wedemeyer, Olaf
    Skrypnik, Aleksandr
    Konys, Juergen
    Schroer, Carsten
    HIGH TEMPERATURE CORROSION OF MATERIALS, 2024, 101 (03) : 589 - 602