Application of Constacyclic Codes Over the Semi Local Ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document}

被引:0
作者
Tushar Bag
Abdullah Dertli
Yasemin Cengellenmis
Ashish K. Upadhyay
机构
[1] Indian Institute of Technology Patna,Department of Mathematics
[2] Ondokuz Mayis University,Mathematics Department
[3] Faculty of Arts and Sciences,Mathematics Department
[4] Trakya University,undefined
[5] Faculty of Sciences,undefined
关键词
Gray map; cyclic code; negacyclic code; constacyclic codes; quantum codes; 94B05; 94B15; 94B60;
D O I
10.1007/s13226-020-0399-3
中图分类号
学科分类号
摘要
In this paper, we study the quantum codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}}$$\end{document}, which are obtained from (λ1 + λ2)-constacyclic codes over the semi local ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document}, where v2 = 1, p is odd prime. We decompose a (λ1 + λ2)-constacyclic code over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document} into two constacyclic codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}}$$\end{document} such as (λ1 + λ2)-constacyclic and (λ1–λ2)-constacyclic. We give the necessary and sufficient condition that the (λ1 + vλ2)-constacyclic codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_{{p^m}}} + v{F_{{p^m}}}$$\end{document} contain their duals. We give some examples of non binary quantum codes.
引用
收藏
页码:265 / 275
页数:10
相关论文
共 42 条
[1]  
Dertli A(2015)On quantum codes obtained from cyclic codes over Int. J. Quantum Inf. 13 1550031-4751
[2]  
Cengellenmis Y(2016)Some results on the linear codes over the finite ring Int. J. Quantum Inf. 14 1650012-1387
[3]  
Eren S(2016)+ Discrete Math. Algorithms Appl. 8 1650036-1484
[4]  
Dertli A(2018)+... + Asian-Eur. J. Math. 11 1850009-1722
[5]  
Cengellenmis Y(1996)On the linear codes over the ring Phys. Rev. A 54 4741-2086
[6]  
Eren S(1998)On Quantum codes from cyclic codes over IEEE Trans. Inf. Theory 44 1369-144
[7]  
Dertli A(2015) + IEEE Trans. Inf. Theory 61 1474-4098
[8]  
Cengellenmis Y(2013) + J. Inf. Compt. Science 10 1715-384
[9]  
Eren S(2014)Simple quantum error-correcting codes IEEE Trans. Inf. Theory 60 2080-2496
[10]  
Singh A K(2014)Quantum error-correction via codes over GF(4) Int. J. Quantum Inf. 12 1450042-889