Fast adaptive algorithms for abrupt change detection

被引:0
|
作者
Daniel Nikovski
Ankur Jain
机构
[1] Mitsubishi Electric Research Laboratories,
来源
Machine Learning | 2010年 / 79卷
关键词
Event detection; Distribution monitoring; CUSUM;
D O I
暂无
中图分类号
学科分类号
摘要
We propose two fast algorithms for abrupt change detection in streaming data that can operate on arbitrary unknown data distributions before and after the change. The first algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-GT}$\end{document} , computes efficiently the average Euclidean distance between all pairs of data points before and after the hypothesized change. The second algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} , computes the log-likelihood ratio statistic for the data distributions before and after the change, similarly to the classical CUSUM algorithm, but unlike that algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} does not need to know the exact distributions, and uses kernel density estimates instead. Although a straightforward computation of the two change statistics would have computational complexity of O(N4) with respect to the size N of the streaming data buffer, the proposed algorithms are able to use the computational structure of these statistics to achieve a computational complexity of only O(N2) and memory requirement of O(N). Furthermore, the algorithms perform surprisingly well on dependent observations generated by underlying dynamical systems, unlike traditional change detection algorithms.
引用
收藏
页码:283 / 306
页数:23
相关论文
共 50 条
  • [41] Deep Learning and Change Detection for Fall Recognition
    Tasoulis, Sotiris K.
    Mallis, Georgios I.
    Georgakopoulos, Spiros V.
    Vrahatis, Aristidis G.
    Plagianakos, Vassilis P.
    Maglogiannis, Ilias G.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 : 262 - 273
  • [42] Change Detection with the Kernel Cumulative Sum Algorithm
    Flynn, Thomas
    Yoo, Shinjae
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 6092 - 6099
  • [43] A CUSUM test for panel mean change detection
    Shin, Dong Wan
    Hwang, Eunju
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (01) : 70 - 77
  • [44] CHANGE-POINT DETECTION FOR LEVY PROCESSES
    Figueroa-Lopez, Jose E.
    Olafsson, Sveinn
    ANNALS OF APPLIED PROBABILITY, 2019, 29 (02) : 717 - 738
  • [45] OPTIMAL CHANGE-POINT DETECTION AND LOCALIZATION
    Verzelen, Nicolas
    Fromont, Magalie
    Lerasle, Matthieu
    Reynaud-Bouret, Patricia
    ANNALS OF STATISTICS, 2023, 51 (04) : 1586 - 1610
  • [46] Quickest Change Detection for Unnormalized Statistical Models
    Wu, Suya
    Diao, Enmao
    Banerjee, Taposh
    Ding, Jie
    Tarokh, Vahid
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (02) : 1220 - 1232
  • [47] A Mixture of Experts with Adaptive Semantic Encoding for Event Detection
    Li, Zhongqiu
    Hong, Yu
    He, Shiming
    Yang, Shuai
    Zhou, Guodong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [48] Heteroscedasticity and Autocorrelation Robust Structural Change Detection
    Zhou, Zhou
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (502) : 726 - 740
  • [49] Asymptotical Optimality of Change Point Detection With Unknown Discrete Post-Change Distributions
    Xu, Yinfei
    Wang, Qiao
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 695 - 699
  • [50] POWER SYSTEM LINE OUTAGE DETECTION AND IDENTIFICATION - A QUICKEST CHANGE DETECTION APPROACH
    Banerjee, Taposh
    Chen, Yu Christine
    Dominguez-Garcia, Alejandro D.
    Veeravalli, Venugopal V.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,