Fast adaptive algorithms for abrupt change detection

被引:0
|
作者
Daniel Nikovski
Ankur Jain
机构
[1] Mitsubishi Electric Research Laboratories,
来源
Machine Learning | 2010年 / 79卷
关键词
Event detection; Distribution monitoring; CUSUM;
D O I
暂无
中图分类号
学科分类号
摘要
We propose two fast algorithms for abrupt change detection in streaming data that can operate on arbitrary unknown data distributions before and after the change. The first algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-GT}$\end{document} , computes efficiently the average Euclidean distance between all pairs of data points before and after the hypothesized change. The second algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} , computes the log-likelihood ratio statistic for the data distributions before and after the change, similarly to the classical CUSUM algorithm, but unlike that algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} does not need to know the exact distributions, and uses kernel density estimates instead. Although a straightforward computation of the two change statistics would have computational complexity of O(N4) with respect to the size N of the streaming data buffer, the proposed algorithms are able to use the computational structure of these statistics to achieve a computational complexity of only O(N2) and memory requirement of O(N). Furthermore, the algorithms perform surprisingly well on dependent observations generated by underlying dynamical systems, unlike traditional change detection algorithms.
引用
收藏
页码:283 / 306
页数:23
相关论文
共 50 条
  • [31] Adaptive online event detection in news streams
    Hu, Linmei
    Zhang, Bin
    Hou, Lei
    Li, Juanzi
    KNOWLEDGE-BASED SYSTEMS, 2017, 138 : 105 - 112
  • [32] Using an adaptive entropy-based threshold for change detection methods - Application to fault-tolerant fusion in collaborative mobile robotics
    Daass, Bilal
    Pomorski, Denis
    Haddadi, Kamel
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 1173 - 1178
  • [33] Toward fast and accurate emergency cases detection in BSNs
    Boudargham, Nadine
    El Sibai, Rayane
    Abdo, Jacques Bou
    Demerjian, Jacques
    Guyeux, Christophe
    Makhoul, Abdallah
    IET WIRELESS SENSOR SYSTEMS, 2020, 10 (01) : 47 - 60
  • [34] A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms
    Caldas, Rafael
    Mundt, Marion
    Potthast, Wolfgang
    de Lima Neto, Fernando Buarque
    Markert, Bernd
    GAIT & POSTURE, 2017, 57 : 204 - 210
  • [35] Evaluation of Detection Algorithms for MAC Layer Misbehavior: Theory and Experiments
    Cardenas, Alvaro A.
    Radosavac, Svetlana
    Baras, John S.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2009, 17 (02) : 605 - 617
  • [36] A Review of Gait Phase Detection Algorithms for Lower Limb Prostheses
    Huong Thi Thu Vu
    Dong, Dianbiao
    Cao, Hoang-Long
    Verstraten, Tom
    Lefeber, Dirk
    Vanderborght, Bram
    Geeroms, Joost
    SENSORS, 2020, 20 (14) : 1 - 19
  • [37] Fast Generalized Subset Scan for Anomalous Pattern Detection
    McFowland, Edward, III
    Speakman, Skyler
    Neill, Daniel B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1533 - 1561
  • [38] Predictive change point detection for heterogeneous data
    Glock A.-C.
    Sobieczky F.
    Fürnkranz J.
    Filzmoser P.
    Jech M.
    Neural Computing and Applications, 2024, 36 (26) : 16071 - 16096
  • [39] A CUSUM test for panel mean change detection
    Dong Wan Shin
    Eunju Hwang
    Journal of the Korean Statistical Society, 2017, 46 : 70 - 77
  • [40] Change-level detection for Levy subordinators
    Al Masry, Zeina
    Rabehasaina, Landy
    Verdier, Ghislain
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 147 : 423 - 455