Fast adaptive algorithms for abrupt change detection

被引:0
|
作者
Daniel Nikovski
Ankur Jain
机构
[1] Mitsubishi Electric Research Laboratories,
来源
Machine Learning | 2010年 / 79卷
关键词
Event detection; Distribution monitoring; CUSUM;
D O I
暂无
中图分类号
学科分类号
摘要
We propose two fast algorithms for abrupt change detection in streaming data that can operate on arbitrary unknown data distributions before and after the change. The first algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-GT}$\end{document} , computes efficiently the average Euclidean distance between all pairs of data points before and after the hypothesized change. The second algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} , computes the log-likelihood ratio statistic for the data distributions before and after the change, similarly to the classical CUSUM algorithm, but unlike that algorithm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\textsf{MB-CUSUM}$\end{document} does not need to know the exact distributions, and uses kernel density estimates instead. Although a straightforward computation of the two change statistics would have computational complexity of O(N4) with respect to the size N of the streaming data buffer, the proposed algorithms are able to use the computational structure of these statistics to achieve a computational complexity of only O(N2) and memory requirement of O(N). Furthermore, the algorithms perform surprisingly well on dependent observations generated by underlying dynamical systems, unlike traditional change detection algorithms.
引用
收藏
页码:283 / 306
页数:23
相关论文
共 50 条
  • [1] Fast adaptive algorithms for abrupt change detection
    Nikovski, Daniel
    Jain, Ankur
    MACHINE LEARNING, 2010, 79 (03) : 283 - 306
  • [2] Supervised Learning for Abrupt Change Detection in a Driven Eccentric Wheel
    Moore, Samuel A.
    Culver, Dean
    Mann, Brian P.
    NONLINEAR STRUCTURES & SYSTEMS, VOL 1, 2023, : 185 - 192
  • [3] Kernel-Based Edge-Preserving Methods for Abrupt Change Detection
    Xiang, Shiming
    Tang, Bo
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 86 - 90
  • [4] Adaptive approach for change detection in EMG recordings
    El Falou, W
    Khalil, M
    Duchêne, J
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 1875 - 1878
  • [5] Algorithms for Change Detection with Unknown Number of Affected Sensors
    Kumar, P. Sarath
    Kiran, B. Sai
    Kannu, Arun Pachai
    Bhashyam, Srikrishna
    2013 NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2013,
  • [6] Quickest Change Detection in Adaptive Censoring Sensor Networks
    Ren, Xiaoqiang
    Johansson, Karl H.
    Shi, Dawei
    Shi, Ling
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (01): : 239 - 250
  • [7] Adaptive change detection in heart rate trend monitoring in anesthetized children
    Yang, Ping
    Dumont, Guy
    Ansermino, J. Mark
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) : 2211 - 2219
  • [8] Quickest detection of abrupt changes for a class of random processes
    Moustakides, GV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) : 1965 - 1968
  • [9] Robust algorithms for economic designing of a nonparametric control chart for abrupt shift in location
    Li, Chenglong
    Mukherjee, Amitava
    Su, Qin
    Xie, Min
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 306 - 323
  • [10] Real time change-point detection in a model by adaptive LASSO and CUSUM
    Ciuperca, Gabriela
    JOURNAL OF THE SFDS, 2015, 156 (04): : 113 - 132