Painlevé IV and the semi-classical Laguerre unitary ensembles with one jump discontinuities

被引:0
作者
Mengkun Zhu
Dan Wang
Yang Chen
机构
[1] Qilu University of Technology (Shandong Academy of Sciences),School of Mathematics and Statistics
[2] University of Macau,Department of Mathematics, Faculty of Science and Technology
来源
Analysis and Mathematical Physics | 2021年 / 11卷
关键词
Ladder operators; Laguerre unitary ensembles; Orthogonal polynomials; Painlevé equations; Asymptotics; 15B52; 42C05; 33E17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present the characteristic of a certain discontinuous linear statistic of the semi-classical Laguerre unitary ensembles w(z,t)=Aθ(z-t)e-z2+tz,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} w(z,t)=A\theta (z-t)e^{-z^2+tz}, \end{aligned}$$\end{document}here θ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta (x)$$\end{document} is the Heaviside function, where A>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A> 0$$\end{document}, t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t>0$$\end{document}, and z∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\in [0,\infty )$$\end{document}. We derive the ladder operators and its interrelated compatibility conditions. By using the ladder operators, we show two auxiliary quantities Rn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_n(t)$$\end{document} and rn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_n(t)$$\end{document} satisfy the coupled Riccati equations, from which we also prove that Rn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_n(t)$$\end{document} satisfies a particular Painlevé IV equation. Even more, σn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _n(t)$$\end{document}, allied to Rn(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_n(t)$$\end{document}, satisfies both the discrete and continuous Jimbo–Miwa–Okamoto σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-form of the Painlevé IV equation. Finally, we consider the situation when n gets large, the second order linear differential equation satisfied by the polynomials Pn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n(x)$$\end{document} orthogonal with respect to the semi-classical weight turn to be a particular bi-confluent Heun equation.
引用
收藏
相关论文
共 45 条
[1]  
Basor E(2009)Painlevé V and the distribution function of a discontinuous linear statistics in the Laguerre unitary ensembles J. Phys. A Math. Theor. 42 035203-198
[2]  
Chen Y(2005)Orthogonal polynomials with discontinuous weights J. Phys. A Math. Gen. 38 191-7829
[3]  
Chen Y(1997)Ladder operators and differential equations for orthogonal polynomials J. Phys. A Math. Gen. 30 7818-472
[4]  
Pruessner G(2005)Jacobi polynomials from compatibility conditions Proc. Am. Math. Soc. 133 465-179
[5]  
Chen Y(2019)Orthogonal polynomials, asymptotics and Heun equation J. Math. Phys. 60 113501-220
[6]  
Ismail MEH(2012)The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation J. Phys. A Math. Theor. 45 205201-254
[7]  
Chen Y(2017)The recurrence coefficients of a semi-classical Laguerre polynomials and the large Random Matrices Theory Appl. 6 1740002-448
[8]  
Ismail MEH(1888) asymptotics of the associated Hankel determinant Math. Ann. (German) 33 161-72
[9]  
Chen Y(2020)Zur theorie der Riemann’schen functionen zweiter ordnung mit vier verzweigungspunkten, Random Matrices Theory Appl. 2 2050016-5313
[10]  
Filipuk G(2018)Painlevé V. Painlevé XXXIV and the degenerate Laguerre unitary ensemble Stud. Appl. Math. 140 202-1012