An adaptation of the modified decomposition method in solving nonlinear initial-boundary value problems for ODEs

被引:0
作者
Lazhar Bougoffa
Randolph C. Rach
机构
[1] Imam Mohammad Ibn Saud Islamic University (IMSIU),Department of Mathematics, Faculty of Science
[2] The George Adomian Center for Applied Mathematics,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Initial-boundary value problem; Adomian decomposition method; Adomian polynomials; Emden–Fowler equation; Thomas–Fermi equation; Bratu equation; Troesch equation; 34A12; 34B15; 34B40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers an interesting variation of the modified decomposition method, which permits determination of the solution of nonlinear initial-boundary value problems for second-order ODEs appearing in physics such as the Thomas–Fermi, Bratu and Troesch equations.
引用
收藏
页码:2787 / 2802
页数:15
相关论文
共 36 条
  • [1] Adomian G(1986)Evaluation of integrals by decomposition J. Comput. Appl. Math. 23 99-101
  • [2] Rach R(1990)Multiple decompositions for computational convenience Appl. Math. Lett. 3 97-99
  • [3] Rach R(1992)A modified decomposition Comput. Math. Appl. 23 17-23
  • [4] Adomian G(1991)Transformations of series Appl. Math. Ltrs. 4 69-72
  • [5] Rach R(2013)A new modified Adomian decomposition method for higher-order nonlinear dynamical systems CMES 94 77-118
  • [6] Adomian G(2016)Exact and approximate analytic solutions of the thin film flow of fourth-grade fluids by the modified Adomian decomposition method Int. J. Numer. Methods Heat Fluid Flow 26 1-10
  • [7] Adomian G(1983)Inversion of nonlinear stochastic operators J. Math. Anal. Appl. 91 39-46
  • [8] Rach R(1986)On composite nonlinearities and the decomposition method J. Math. Anal. Appl. 113 504-509
  • [9] Duan Jun-Sheng(1984)A convenient computational form for the Adomian polynomials J. Math. Anal. Appl. 102 415-419
  • [10] Rach Randolph(2010)Recurrence triangle for Adomian polynomials Appl. Math. Comput. 216 1235-1241