Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin

被引:0
作者
Yong Huang
Ming-Sheng Liu
Saminathan Ponnusamy
机构
[1] South China Normal University,School of Mathematical Sciences
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Bohr radius; harmonic and analytic functions; Quasi-regular mappings; Primary 30A10; 30C45; 30C62; Secondary 30C75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first determine Bohr’s inequality for the class of harmonic mappings f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}$$\end{document} in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, where either both h(z)=∑n=0∞apn+mzpn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(z)=\sum _{n=0}^{\infty }a_{pn+m}z^{pn+m}$$\end{document} and g(z)=∑n=0∞bpn+mzpn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=\sum _{n=0}^{\infty }b_{pn+m}z^{pn+m}$$\end{document} are analytic and bounded in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, or satisfies the condition |g′(z)|≤d|h′(z)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|g'(z)|\le d|h'(z)|$$\end{document} in D\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}\backslash \{0\}$$\end{document} for some d∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in [0,1]$$\end{document} and h is bounded. In particular, we obtain Bohr’s inequality for the class of harmonic p-symmetric mappings. Also, we investigate the Bohr-type inequalities of harmonic mappings with a multiple zero at the origin and that most of results are proved to be sharp.
引用
收藏
相关论文
共 73 条
[71]  
Ricci G(undefined)undefined undefined undefined undefined-undefined
[72]  
Sidon S(undefined)undefined undefined undefined undefined-undefined
[73]  
Tomić M(undefined)undefined undefined undefined undefined-undefined