Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin

被引:0
作者
Yong Huang
Ming-Sheng Liu
Saminathan Ponnusamy
机构
[1] South China Normal University,School of Mathematical Sciences
[2] Indian Institute of Technology Madras,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Bohr radius; harmonic and analytic functions; Quasi-regular mappings; Primary 30A10; 30C45; 30C62; Secondary 30C75;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first determine Bohr’s inequality for the class of harmonic mappings f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}$$\end{document} in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, where either both h(z)=∑n=0∞apn+mzpn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(z)=\sum _{n=0}^{\infty }a_{pn+m}z^{pn+m}$$\end{document} and g(z)=∑n=0∞bpn+mzpn+m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(z)=\sum _{n=0}^{\infty }b_{pn+m}z^{pn+m}$$\end{document} are analytic and bounded in D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, or satisfies the condition |g′(z)|≤d|h′(z)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|g'(z)|\le d|h'(z)|$$\end{document} in D\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}\backslash \{0\}$$\end{document} for some d∈[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in [0,1]$$\end{document} and h is bounded. In particular, we obtain Bohr’s inequality for the class of harmonic p-symmetric mappings. Also, we investigate the Bohr-type inequalities of harmonic mappings with a multiple zero at the origin and that most of results are proved to be sharp.
引用
收藏
相关论文
共 73 条
[1]  
Abu-Muhanna Y(2010)Bohr’s phenomenon in subordination and bounded harmonic classes Complex Var. Elliptic Equ. 55 1071-1078
[2]  
Abu-Muhanna Y(2011)Bohr’s phenomenon for analytic functions into the exterior of a compact convex body J. Math. Anal. Appl. 379 512-517
[3]  
Ali RM(2013)Bohr’s phenomenon for analytic functions and the hyperbolic metric Math. Nachr. 286 1059-1065
[4]  
Abu-Muhanna Y(2014)Bohr radius for subordinating families of analytic functions and bounded harmonic mappings J. Math. Anal. Appl. 420 124-136
[5]  
Ali RM(2000)Multidimensional analogues of Bohr’s theorem on power series Proc. Am. Math. Soc. 128 1147-1155
[6]  
Abu-Muhanna Y(2005)Generalization of Caratheodory’s inequality and the Bohr radius for multidimensional power series Oper. Theory Adv. Appl. 158 87-94
[7]  
Ali RM(2001)Generalization of a theorem of Bohr for basis in spaces of holomorphic functions of several complex variables J. Math. Anal. Appl. 258 429-447
[8]  
Ng ZC(2017)A note on the Bohr’s phenomenon for power series J. Math. Anal. Appl. 449 154-167
[9]  
Hasni SFM(2019)On the Bohr inequality with a fixed zero coefficient Proc. Am. Math. Soc. 147 5263-5274
[10]  
Aizenberg L(2018)Bohr phenomenon for subordinating families of certain univalent functions J. Math. Anal. Appl. 462 1087-1098