Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process

被引:0
作者
Thu Dang Thien Nguyen
机构
[1] Gran Sasso Science Institute,Department of Mathematics
[2] University of Quynhon,undefined
来源
Journal of Statistical Physics | 2019年 / 175卷
关键词
Hydrodynamic limits; Adiabatic limits; Ideal reservoir limits; Global equilibrium limits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the long time behavior of the simple symmetric exclusion process in the “channel” ΛN=[1,N]∩N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _N=[1,N]\cap \mathbb {N}$$\end{document} with reservoirs at the boundaries. These reservoirs are also systems of particles which can be exchanged with the particles in the channel. The size M of each reservoir is much larger than the one of the channel, i.e. M=N1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N^{1+\alpha }$$\end{document} for a fixed number α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Based on the size of the channel and the holding time at each reservoir, we will investigate some types of rescaling time.
引用
收藏
页码:402 / 417
页数:15
相关论文
共 8 条
  • [1] Amir M(1991)Sticky Brownian motion as the strong limit of a sequence of random walks Stoch. Process. Appl. 39 221-237
  • [2] De Masi A(2015)Quasi-static hydrodynamic limits J. Stat. Phys. 161 1037-1058
  • [3] Olla S(1981)Non equilibrium measures which exhibit a temperature gradient: study of a model Commun. Math. Phys. 81 124-147
  • [4] Galves A(2018)Fick law and sticky Brownian motions J. Stat. Phys. 174 494-518
  • [5] Kipnis C(undefined)undefined undefined undefined undefined-undefined
  • [6] Marchioro C(undefined)undefined undefined undefined undefined-undefined
  • [7] Presutti E(undefined)undefined undefined undefined undefined-undefined
  • [8] Nguyen TDT(undefined)undefined undefined undefined undefined-undefined