Gravitational Collapse in Loop Quantum Gravity

被引:0
作者
Leonardo Modesto
机构
[1] Bologna University & INFN Bologna,Department of Physics
来源
International Journal of Theoretical Physics | 2008年 / 47卷
关键词
Black Hole; Quantum Gravity; Event Horizon; Gravitational Collapse; Loop Quantum Gravity;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the gravitational collapse applying methods of loop quantum gravity to a minisuperspace model. We consider the space-time region inside the Schwarzschild black hole event horizon and we divide this region in two parts, the first one where the matter (dust matter) is localized and the other (outside) where the metric is Kantowski–Sachs type. We study the Hamiltonian constraint obtaining a set of three difference equations that give a regular and natural evolution beyond the classical singularity point in “r=0” localized.
引用
收藏
页码:357 / 373
页数:16
相关论文
共 48 条
[1]  
Ashtekar A.(2004)Background independent quantum gravity: a status report Class. Quantum Gravity 21 R53-135
[2]  
Thiemann T.(2003)Lectures on loop quantum gravity Lect. Notes Phys. 631 41-985
[3]  
Reuter M.(1998)Nonperturbative evolution equation for quantum gravity Phys. Rev. D 57 971-1508
[4]  
Bojowald M.(2000)Loop quantum cosmology, I: kinematics Class. Quantum Gravity 17 1489-1526
[5]  
Bojowald M.(2000)Loop quantum cosmology, II: volume operators Class. Quantum Gravity 17 1509-1070
[6]  
Bojowald M.(2001)Loop quantum cosmology, III: Wheeler–DeWitt operators Class. Quantum Gravity 18 1055-268
[7]  
Bojowald M.(2001)Inverse scale factor in isotropic quantum geometry Phys. Rev. D 64 084018-411
[8]  
Bojowald M.(2001)Loop quantum cosmology IV: discrete time evolution Class. Quantum Gravity 18 1071-5602
[9]  
Ashtekar A.(2003)Mathematica structure of loop quantum cosmology Adv. Theor. Math. Phys. 7 233-1602
[10]  
Bojowald M.(2004)Disappearance of the black hole singularity in loop quantum gravity Phys. Rev. D 70 124009-2742