On a parametric functional equation of Dhombres type

被引:0
作者
P. Kahlig
J. Smítal
机构
[1] Institute of Meteorology and Geophysics,
[2] University of Vienna,undefined
[3] UZA 2,undefined
[4] A-1090 Vienna,undefined
[5] Austria,undefined
[6] e-mail: peter.kahlig@univie.ac.at,undefined
[7] Institute of Mathematics,undefined
[8] Silesian University,undefined
[9] CZ-746 01 Opava,undefined
[10] Czech Republic,undefined
[11] e-mail: smital@fpf.slu.cz,undefined
关键词
Functional Equation; Uniform Convergence; Real Parameter; Continuous Solution; Primary 39B22;
D O I
10.1007/s000100050044
中图分类号
学科分类号
摘要
In this paper we consider the functional equation f (x f (x)) = k f (x)2, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f : R^+ \rightarrow R^+ $$\end{document} and k > 0 is a real parameter. We give a characterization of the class of its continuous solutions, and show that there are discontinuous solutions which are strongly irregular.
引用
收藏
页码:63 / 68
页数:5
相关论文
共 50 条
[31]   Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation [J].
M. Eshaghi Gordji ;
S. Kaboli Gharetapeh ;
J. M. Rassias ;
S. Zolfaghari .
Advances in Difference Equations, 2009
[32]   ON A FUNCTIONAL EQUATION [J].
丁毅 .
ActaMathematicaScientia, 2009, 29 (02) :225-231
[33]   ON A FUNCTIONAL EQUATION [J].
Ding Yi .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) :225-231
[34]   Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation [J].
MinJune Kim ;
SeungWon Schin ;
Dohyeong Ki ;
Jaewon Chang ;
Ji-Hye Kim .
Fixed Point Theory and Applications, 2011
[35]   On a pythagorean-type functional equation with exponent 3 involving finite fields [J].
J. L. García-Roig ;
Emma Martín-Gutiérrez .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2000, 70 :85-92
[36]   Martingale convergence and the functional equation in the multi-type branching random walk [J].
Kyprianou, AE ;
Sani, AR .
BERNOULLI, 2001, 7 (04) :593-604
[37]   On a pythagorean-type functional equation with exponent 3 involving finite fields [J].
García-Roig, JL ;
Martín-Gutiérrez, E .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2000, 70 (1) :85-92
[38]   On a Multilinear Functional Equation [J].
A. A. Illarionov .
Mathematical Notes, 2020, 107 :80-92
[39]   On a Multilinear Functional Equation [J].
Illarionov, A. A. .
MATHEMATICAL NOTES, 2020, 107 (1-2) :80-92
[40]   Remarks on a functional equation [J].
Daroczy, Zoltan ;
Totikt, Vilmos .
ACTA SCIENTIARUM MATHEMATICARUM, 2015, 81 (3-4) :527-534