On a parametric functional equation of Dhombres type

被引:0
作者
P. Kahlig
J. Smítal
机构
[1] Institute of Meteorology and Geophysics,
[2] University of Vienna,undefined
[3] UZA 2,undefined
[4] A-1090 Vienna,undefined
[5] Austria,undefined
[6] e-mail: peter.kahlig@univie.ac.at,undefined
[7] Institute of Mathematics,undefined
[8] Silesian University,undefined
[9] CZ-746 01 Opava,undefined
[10] Czech Republic,undefined
[11] e-mail: smital@fpf.slu.cz,undefined
关键词
Functional Equation; Uniform Convergence; Real Parameter; Continuous Solution; Primary 39B22;
D O I
10.1007/s000100050044
中图分类号
学科分类号
摘要
In this paper we consider the functional equation f (x f (x)) = k f (x)2, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ f : R^+ \rightarrow R^+ $$\end{document} and k > 0 is a real parameter. We give a characterization of the class of its continuous solutions, and show that there are discontinuous solutions which are strongly irregular.
引用
收藏
页码:63 / 68
页数:5
相关论文
共 50 条
  • [1] On a generalized Dhombres functional equation
    Kahlig P.
    Smítal J.
    aequationes mathematicae, 2001, 62 (1) : 18 - 29
  • [2] On regular solutions of the generalized Dhombres equation
    Smital, J.
    Stefankova, M.
    AEQUATIONES MATHEMATICAE, 2015, 89 (01) : 57 - 61
  • [3] On Regular Solutions of the Generalized Dhombres Equation II
    Reich, L.
    Smital, J.
    Stefankova, M.
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 521 - 528
  • [5] LOCAL ANALYTIC SOLUTIONS OF A MORE GENERALIZED DHOMBRES EQUATION
    Zhang, Qian
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (01) : 207 - 217
  • [6] On continuous solutions of a functional equation of iterative type
    Liu, ZQ
    Ume, JS
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) : 1403 - 1415
  • [7] A PARAMETRIC FUNCTIONAL EQUATION ORIGINATING FROM NUMBER THEORY
    Mouzoun, Aziz
    Zeglami, Driss
    Aissi, Youssef
    ANNALES MATHEMATICAE SILESIANAE, 2022, 36 (01) : 71 - 91
  • [8] On a functional equation of trigonometric type
    Jung, Soon-Mo
    Rassias, Michael Th.
    Mortici, Cristinel
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 252 : 294 - 303
  • [9] On the stability of a functional equation of pexider type
    Jung, Yong-Soo
    Park, Kyoo-Hong
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1503 - 1509
  • [10] ON THE STABILITY OF THE COSINE TYPE FUNCTIONAL EQUATION
    Kim, Gwang Hui
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2007, 14 (01): : 7 - 14