Fixed points of monotone nonexpansive mappings with a graph

被引:0
作者
Monther Rashed Alfuraidan
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics and Statistics
来源
Fixed Point Theory and Applications | / 2015卷
关键词
Banach space; directed graph; fixed point; monotone nonexpansive mappings; 06F30; 46B20; 47E10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of fixed points of monotone nonexpansive mappings defined in Banach spaces endowed with a graph. This work is a continuity of the previous results of Ran and Reurings, Nieto et al., and Jachimsky done for contraction mappings defined in metric spaces endowed with a graph.
引用
收藏
相关论文
共 12 条
  • [1] Banach S(1922)Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales Fundam. Math. 3 133-181
  • [2] Nieto JJ(2005)Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations Order 22 223-239
  • [3] Rodríguez-López R(2004)A fixed point theorem in partially ordered sets and some applications to matrix equations Proc. Am. Math. Soc. 132 1435-1443
  • [4] Ran ACM(2012)Fixed point theorems for Reich type contractions on metric spaces with a graph Nonlinear Anal. 75 3895-3901
  • [5] Reurings MCB(2007)The contraction principle for mappings on a metric space with a graph Proc. Am. Math. Soc. 136 1359-1373
  • [6] Bojor F(1965)Nonexpansive nonlinear operators in a Banach space Proc. Natl. Acad. Sci. USA 54 1041-1044
  • [7] Jachymski J(1955)Two observations about the method of successive approximations Usp. Mat. Nauk 10 123-127
  • [8] Browder FE(1976)Fixed points and iteration of a nonexpansive mapping in a Banach space Proc. Am. Math. Soc. 59 65-71
  • [9] Krasnoselskii MA(1983)Iteration processes for nonexpansive mappings Contemp. Math. 21 115-123
  • [10] Ishikawa S(undefined)undefined undefined undefined undefined-undefined