Chevalley–Weil theorem and subgroups of class groups

被引:0
作者
Yuri Bilu
Jean Gillibert
机构
[1] Université de Bordeaux and CNRS,Institut de Mathématiques de Bordeaux
[2] Institut de Mathématiques de Toulouse,undefined
[3] CNRS UMR 5219,undefined
来源
Israel Journal of Mathematics | 2018年 / 226卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove, under some mild hypothesis, that an ´etale cover of curves defined over a number field has infinitely many specializations into an everywhere unramified extension of number fields. This constitutes an “absolute” version of the Chevalley–Weil theorem. Using this result, we are able to generalise the techniques of Mestre, Levin and the second author for constructing and counting number fields with large class group.
引用
收藏
页码:927 / 956
页数:29
相关论文
共 23 条
[1]  
Azuhata T.(1984)On the divisibility problem of the class numbers of algebraic number fields Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 30 579-585
[2]  
Ichimura H.(1999)Structure of sets with small sumsets Astérisque 258 77-108
[3]  
Bilu Yu.(2018)Counting number fields in fibers Mathematische Zeitschrift 288 541-563
[4]  
Bilu Yu.(2013)Remarks on Eisenstein Journal of the Australian Mathematical Society 94 158-180
[5]  
Bilu Yu.(2005)Divisibility of class numbers: enumerative approach Journal für die reine und angewandte Mathematik 578 79-91
[6]  
Borichev A.(2013)Quantitative Chevalley–Weil theorem for curves Monatshefte für Mathematik 171 1-32
[7]  
Bilu Yu. F.(2006)New light on Hensel’s lemma Expositiones Mathematicae 24 291-306
[8]  
Luca F.(2016)Selmer groups as flat cohomology groups Journal of the Ramanujan Mathematical Society 31 31-61
[9]  
Strambi Yu. B. M.(2003)On the number of integral points on algebraic curves Journal für die reine und angewandte Mathematik 565 27-42
[10]  
Surroca A.(1964)On a principle of Lipschitz Journal of the London Mathematical Society 26 (1951), 179–183; corrigendum 39 580-443