Traces on infinite-dimensional brauer algebras

被引:0
作者
P. P. Nikitin
A. M. Vershik
机构
[1] St. Petersburg Department of Steklov Institute of Mathematics,
来源
Functional Analysis and Its Applications | 2006年 / 40卷
关键词
Brauer algebra; walled Brauer algebra; partition algebra; central measure; finite trace;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a theorem describing central measures for random walks on graded graphs. Using this theorem, we obtain the list of all finite traces on three infinite-dimensional algebras, namely, on the Brauer algebra, the walled Brauer algebra, and the partition algebra. The main result is that these lists coincide with the list of traces of the symmetric group or (for the walled Brauer algebra) of the square of the symmetric group.
引用
收藏
页码:165 / 172
页数:7
相关论文
共 22 条
  • [1] Benkart G.(1994)Tensor product representations of general linear groups and their connections with Brauer algebras J. Algebra 166 529-567
  • [2] Chakrabarti M.(1989)Braids, link polynomials and a new algebra Trans. Amer. Math. Soc. 313 249-274
  • [3] Halverson T.(1937)On algebras which are connected with the semisimple continuous groups Ann. of Math. 38 854-872
  • [4] Leduc R.(1996)Characters of the centralizer algebras of mixed tensor representations of Pacific J. Math. 174 359-410
  • [5] Lee C.(2005)( European J. Combin. 26 869-921
  • [6] Stroomer J.(1983), ℂ) and the quantum group Invent. Math. 72 1-25
  • [7] Birman J. S.(1989)( Adv. Math. 74 57-86
  • [8] Wenzl H.(1993)( Osaka J. Math. 30 475-507
  • [9] Brauer R.(2000), ℂ)) J. Phys. A 33 3669-3695
  • [10] Halverson T.(1987)Partition algebras Osaka J. Math. 24 745-758