FPGA-based accelerator for object detection: a comprehensive survey

被引:0
|
作者
Kai Zeng
Qian Ma
Jia Wen Wu
Zhe Chen
Tao Shen
Chenggang Yan
机构
[1] Kunming University of Science and Technology,Faculty of Information Engineering and Automation
[2] Kunming University of Science and Technology,Yunnan Key Laboratory of Computer Technologies Application
[3] Automation School of Hangzhou Dianzi University,undefined
来源
The Journal of Supercomputing | 2022年 / 78卷
关键词
Object detection; FPGAs; Hardware accelerators; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Object detection is one of the most challenging tasks in computer vision. With the advances in semiconductor devices and chip technology, hardware accelerators have been widely used. Field-programmable gate arrays (FPGAs) are a highly flexible hardware platform that allows customized reconfiguration of the integrated circuit, which has the potential to improve the efficiency of object detection accelerators. However, few reviews summarize FPGA-based object detection accelerators. Also, there is no general principle for realizing object detection according to FPGA characteristics. In this paper, the current hardware accelerators are introduced and compared. Then, the typical deep learning-based object detectors are summarized. Next, the questions of “Why choose FPGA,” “The design goals of FPGA accelerators” and “The design methods for FPGA accelerators” are discussed in detail. Finally, the challenges of object detection algorithms, hardware, and co-design are presented. In addition, an online platform (https://github.com/vivian13maker/) is constructed to provide specific information on all advanced works.
引用
收藏
页码:14096 / 14136
页数:40
相关论文
共 50 条
  • [1] FPGA-based accelerator for object detection: a comprehensive survey
    Zeng, Kai
    Ma, Qian
    Wu, Jia Wen
    Chen, Zhe
    Shen, Tao
    Yan, Chenggang
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (12) : 14096 - 14136
  • [2] Efficient FPGA-based Accelerator for Post-Processing in Object Detection
    Guo, Zibo
    Liu, Kai
    Liu, Wei
    Li, Shangrong
    2023 INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE TECHNOLOGY, ICFPT, 2023, : 125 - 131
  • [3] A FPGA-based accelerator implementaion for YOLOv2 object detection using Winograd algorithm
    Lv, Peng
    Liu, Wei
    Li, Jinghui
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1894 - 1898
  • [4] FPGA-based Object Detection for Autonomous Driving System
    Harada, Kenichi
    Kanazawa, Kenji
    Yasunaga, Moritoshi
    2019 INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (ICFPT 2019), 2019, : 465 - 468
  • [5] An FPGA-Based YOLOv6 Accelerator for High-Throughput and Energy-Efficient Object Detection
    Sha, Xingan
    Yanagisawa, Masao
    Shi, Youhua
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2025, E108A (03) : 473 - 481
  • [6] Comparison of Different Deployment Approaches of FPGA-Based Hardware Accelerator for 3D Object Detection Models
    Pereira, Pedro
    Silva, Antonio Linhares
    Machado, Rui
    Silva, Joao
    Duraes, Dalila
    Machado, Jose
    Novais, Paulo
    Monteiro, Joao
    Melo-Pinto, Pedro
    Fernandes, Duarte
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2022, 2022, 13566 : 285 - 296
  • [7] Dataflow object detection system for FPGA-based smart camera
    Bourrasset, Cedric
    Maggiani, Luca
    Serot, Jocelyn
    Berry, Francois
    IET CIRCUITS DEVICES & SYSTEMS, 2016, 10 (04) : 280 - 291
  • [8] A Hardware Accelerator for SSD Object Detection Algorithm Based on FPGA
    Xie H.
    Cao J.
    Li P.
    Zhao X.
    Zhang X.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58 (06): : 1015 - 1022
  • [9] An FPGA-based Integrated MapReduce Accelerator Platform
    Kachris, Christoforos
    Diamantopoulos, Dionysios
    Sirakoulis, Georgios Ch.
    Soudris, Dimitrios
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2017, 87 (03): : 357 - 369
  • [10] An FPGA-based Integrated MapReduce Accelerator Platform
    Christoforos Kachris
    Dionysios Diamantopoulos
    Georgios Ch. Sirakoulis
    Dimitrios Soudris
    Journal of Signal Processing Systems, 2017, 87 : 357 - 369