A differentiability criterion for continuous functions

被引:0
作者
Stefan Catoiu
机构
[1] DePaul University,Department of Mathematics
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Generalized Riemann derivative; -derivative; Peano derivative; Primary: 26A24; Secondary: 26A27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, with the exception of the symmetric derivative, each limit of the form limh→0Af(x+ah)+Bf(x+bh)h,(A+B=0,Aa+Bb=1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$\end{document}is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.
引用
收藏
页码:285 / 291
页数:6
相关论文
共 50 条
[41]   GENERALIZED THEOREMS FOR THE MONOTONICITY THEOREM OF FUNCTIONS [J].
Meng Xiangju ;
Cheng Yu ;
Xu Min .
2011 3RD INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT (ICCTD 2011), VOL 3, 2012, :339-342
[42]   THREE BASIC QUESTIONS ON BOOLEAN FUNCTIONS [J].
Carlet, Claude ;
Feukoua, Serge .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (04) :837-855
[43]   Inequalities For rational functions with prescribed poles [J].
Hans, S. ;
Tripathi, D. ;
Mogbademu, A. A. ;
Tyagi, Babita .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (01) :157-169
[44]   for derivative of real-valued functions [J].
Magiotto, Murilo H. ;
Zanin, Guilherme L. ;
Cardoso, Wesley B. ;
Avelar, Ardiley T. ;
Gomes, Rafael M. .
OPTICS AND LASER TECHNOLOGY, 2025, 182
[45]   Uniqueness of Derivatives and Shifts of Meromorphic Functions [J].
Chen, Shengjiang ;
Xu, Aizhu .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2022, 22 (02) :197-205
[46]   q-Blossoming for analytic functions [J].
Ron Goldman ;
Plamen Simeonov .
Numerical Algorithms, 2019, 82 :107-121
[47]   Inner Functions and Inner Factors of Their Derivatives [J].
Konstantin M. Dyakonov .
Integral Equations and Operator Theory, 2015, 82 :151-155
[48]   Entire functions sharing polynomials with derivatives [J].
Lahiri I. ;
Das S. .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2016, 62 (1) :99-115
[49]   A natural continuous interpolating structure for continued fractions [J].
Gill, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :299-309
[50]   On Chebyshev systems of functions holomorphic in the unit disk [J].
Kirjackis E. .
Lithuanian Mathematical Journal, 2005, 45 (2) :192-199