A differentiability criterion for continuous functions

被引:0
作者
Stefan Catoiu
机构
[1] DePaul University,Department of Mathematics
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Generalized Riemann derivative; -derivative; Peano derivative; Primary: 26A24; Secondary: 26A27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, with the exception of the symmetric derivative, each limit of the form limh→0Af(x+ah)+Bf(x+bh)h,(A+B=0,Aa+Bb=1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$\end{document}is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.
引用
收藏
页码:285 / 291
页数:6
相关论文
共 50 条
[31]   Weakly sequentially continuous differentiable mappings [J].
Cilia, Raffaella ;
Gutierrez, Joaquin M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) :609-623
[32]   Calculus of Pseudo-Boolean Functions [J].
Zhao Yin ;
Cheng Daizhan .
PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, :267-272
[33]   A chain rule for matrix functions and applications [J].
Mathias, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) :610-620
[34]   Inner Functions and Inner Factors of Their Derivatives [J].
Dyakonov, Konstantin M. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 82 (02) :151-155
[35]   ON FUNCTIONS DIFFERENTIABLE ON COMPLEMENTS OF COUNTABLE SETS [J].
Cater, F. S. .
REAL ANALYSIS EXCHANGE, 2006, 32 (02) :527-536
[36]   Differentiation of n-convex functions [J].
Fejzic, H. ;
Svetic, R. E. ;
Weil, C. E. .
FUNDAMENTA MATHEMATICAE, 2010, 209 (01) :9-25
[37]   On Order of Banach Valued Analytic Functions [J].
Banerjee, Dibyendu ;
Mondal, Nilkanta .
JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2012, 4 (03) :305-309
[38]   Lineability, differentiable functions and special derivatives [J].
Fernandez-Sanchez, J. ;
Rodriguez-Vidanes, D. L. ;
Seoane-Sepulveda, J. B. ;
Trutschnig, W. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (01)
[39]   Uniqueness of Derivatives and Shifts of Meromorphic Functions [J].
Shengjiang Chen ;
Aizhu Xu .
Computational Methods and Function Theory, 2022, 22 :197-205
[40]   Lineability, differentiable functions and special derivatives [J].
J. Fernández-Sánchez ;
D. L. Rodríguez-Vidanes ;
J. B. Seoane-Sepúlveda ;
W. Trutschnig .
Banach Journal of Mathematical Analysis, 2021, 15