A differentiability criterion for continuous functions

被引:0
作者
Stefan Catoiu
机构
[1] DePaul University,Department of Mathematics
来源
Monatshefte für Mathematik | 2022年 / 197卷
关键词
Generalized Riemann derivative; -derivative; Peano derivative; Primary: 26A24; Secondary: 26A27;
D O I
暂无
中图分类号
学科分类号
摘要
We show that, with the exception of the symmetric derivative, each limit of the form limh→0Af(x+ah)+Bf(x+bh)h,(A+B=0,Aa+Bb=1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim _{h\rightarrow 0}\frac{Af(x+ah)+Bf(x+bh)}{h},\qquad (A+B=0,Aa+Bb=1), \end{aligned}$$\end{document}is equivalent to the ordinary derivative, for all continuous functions at x. And, up to a non-zero scalar multiple, these are the only criteria for differentiating all continuous functions at x, by taking limits of first order difference quotients with two function evaluations.
引用
收藏
页码:285 / 291
页数:6
相关论文
共 50 条
[21]   ON THE DERIVATIVE OF SMOOTH MEANINGFUL FUNCTIONS [J].
Zlobec, Sanjo .
CROATIAN OPERATIONAL RESEARCH REVIEW (CRORR), VOL 2, 2011, 2 :3-3
[22]   Uniqueness of entire functions and their derivatives [J].
Lahiri, Indrajit ;
Ghosh, Gautam Kumar .
ANNALES POLONICI MATHEMATICI, 2009, 96 (03) :239-246
[23]   On unicity of meromorphic functions and their derivatives [J].
Chao Meng ;
Xu Li .
The Journal of Analysis, 2020, 28 :879-894
[24]   Properties of functions with monotone graphs [J].
Michael Hrušák ;
Tamás Mátrai ;
Aleš Nekvinda ;
Václav Vlasák ;
Ondřej Zindulka .
Acta Mathematica Hungarica, 2014, 142 :1-30
[25]   Derivative and factorization of holomorphic functions [J].
Bombal, Fernando ;
Gutierrez, Joaquin M. ;
Villanueva, Ignacio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :444-453
[26]   On unicity of meromorphic functions and their derivatives [J].
Meng, Chao ;
Li, Xu .
JOURNAL OF ANALYSIS, 2020, 28 (03) :879-894
[27]   PROPERTIES OF FUNCTIONS WITH MONOTONE GRAPHS [J].
Hrusak, M. ;
Matrai, T. ;
Nekvinda, A. ;
Vlasak, V. ;
Zindulka, O. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) :1-30
[28]   On uniqueness of meromorphic functions and their derivatives [J].
Meng, Chao ;
Li, Xu .
TBILISI MATHEMATICAL JOURNAL, 2020, 13 (02) :87-99
[29]   ON THE DERIVATIVE OF SMOOTH MEANINGFUL FUNCTIONS [J].
Zlobec, Sanjo .
CROATIAN OPERATIONAL RESEARCH REVIEW, 2011, 2 (01) :3-3
[30]   CONTINUOUS APPROXIMATION SCHEMES FOR STOCHASTIC PROGRAMS [J].
BIRGE, JR ;
QI, LQ .
ANNALS OF OPERATIONS RESEARCH, 1995, 56 :15-38