A note on maximal non-Noetherian subrings of a domain

被引:0
|
作者
Noômen Jarboui
Ayada Jerbi
机构
[1] Faculty of Sciences of Sfax,Department of Mathematics
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2012年 / 53卷 / 1期
关键词
Jaffard domain; Krull dimension; Valuation domain; Noetherian domain; Finite-type module; Pullbacks; Stably strong S-domain; Universally catenarian domain; Primary 13B02; Secondary 13A15; 13A18; 13B21; 13B22; 13B25; 13B30; 13C15; 13E05;
D O I
10.1007/s13366-011-0055-5
中图分类号
学科分类号
摘要
This paper is concerned with the prime spectrum of maximal non-Noetherian subrings of a given domain. It is proved that if R is a maximal non-Noetherian subring of S, then R is a stably strong S-domain and that R is universally catenarian iff S is universally catenarian. Our main results lead to new examples of stably strong S-domains and universally catenarian domains. The relationship with n-dimensional pairs and residually Mori pairs is established.
引用
收藏
页码:159 / 172
页数:13
相关论文
共 50 条
  • [21] Maximal non-pseudovaluation subrings of an integral domain
    Kumar, Rahul
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (02) : 389 - 395
  • [22] A CHARACTERIZATION OF NON-NOETHERIAN BFDS AND FFDS
    Hasenauer, Richard Erwin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (04) : 1149 - 1157
  • [23] GENERATING NON-NOETHERIAN MODULES EFFICIENTLY
    HEITMANN, R
    MICHIGAN MATHEMATICAL JOURNAL, 1984, 31 (02) : 167 - 180
  • [24] Generating non-Noetherian modules constructively
    Thierry Coquand
    Henri Lombardi
    Claude Quitté
    manuscripta mathematica, 2004, 115 : 513 - 520
  • [25] Non-Noetherian conformal scalar fields
    Ayon-Beato, Eloy
    Hassaine, Mokhtar
    ANNALS OF PHYSICS, 2024, 460
  • [26] AN EXISTENCE THEOREM FOR NON-NOETHERIAN RINGS
    GILMER, R
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (06): : 621 - &
  • [27] Non-Noetherian generalized Heisenberg algebras
    Lopes, Samuel A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (04)
  • [28] ASSOCIATED PRIME IDEALS IN NON-NOETHERIAN RINGS
    IROZ, J
    RUSH, DE
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (02): : 344 - 360
  • [29] Maximal Non λ-Subrings
    Rahul Kumar
    Atul Gaur
    Czechoslovak Mathematical Journal, 2020, 70 : 323 - 337
  • [30] Noetherian Subrings
    Azarang, Alborz
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (10): : 1054 - 1055