Symmetry of Positive Solutions for the Fractional Hartree Equation

被引:0
作者
Xiangqing Liu
机构
[1] Yunnan Normal University,Department of Mathematics
来源
Acta Mathematica Scientia | 2019年 / 39卷
关键词
the fractional Hartree equation; positive solutions; radial symmetry; monotonicity; the method of moving plane; 35R11; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by using the method of moving planes, we are concerned with the symmetry and monotonicity of positive solutions for the fractional Hartree equation.
引用
收藏
页码:1508 / 1516
页数:8
相关论文
共 39 条
  • [1] Chen W(2015)Liouville theorems involving the fractional Laplacian on a half space Adv Math 274 167-198
  • [2] Fang Y(2017)A direct method of moving planes for the fractional Laplacian Adv Math 308 404-437
  • [3] Yang R(2017)A direct method of moving planes on fractional order equations J Funct Anal 272 4131-4157
  • [4] Chen W(1971)A symmetry problem in potential theory Arch Ration Mech Anal 43 304-318
  • [5] Li C(2018)Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes J Differential Equations 265 2044-2063
  • [6] Li Y(2019)Regularity and classification of solutions to static Hartree equations involving fractional Laplacians Discrete and Continuous Dynamical Systems 39 1389-1403
  • [7] Chen W(1977)The Hartree-Fock theory for Coulomb systems Commun Math Phys 53 185-194
  • [8] Li Y(2014)Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates Ann Inst Henri Poincaré Anal Non Linéaire 31 23-53
  • [9] Zhang R(2007)Boson stars as solitary waves Commun Math Phys 274 1-30
  • [10] Serrin J(2013)Qualitative analysis for the Hartree-type equations SIAM J Math Anal 45 388-406