Deriving fluorometer-specific values of relative PSI fluorescence intensity from quenching of F0 fluorescence in leaves of Arabidopsis thaliana and Zea mays

被引:0
作者
Erhard E. Pfündel
Christof Klughammer
Armin Meister
Zoran G. Cerovic
机构
[1] Julius-von-Sachs Institut für Biowissenschaften,Lehrstuhl für Botanik II der Universität Würzburg
[2] Heinz Walz GmbH,Equipe de Biospectroscopie Végétale, Laboratoire d’Ecologie Systématique et Evolution (UMR 8079) CNRS, Département d’Ecophysiologie Végétale
[3] Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK),undefined
[4] Université Paris-Sud 11,undefined
来源
Photosynthesis Research | 2013年 / 114卷
关键词
C; photosynthesis; Light-response curve; PAM fluorescence; Photosynthesis; Quantum yield for photochemistry;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of stepwise increments of red light intensities on pulse-amplitude modulated (PAM) chlorophyll (Chl) fluorescence from leaves of A. thaliana and Z. mays was investigated. Minimum and maximum fluorescence were measured before illumination (F0 and FM, respectively) and at the end of each light step (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{\text{M}} $$\end{document}, respectively). Calculated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document} values derived from F0, FM and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{\text{M}} $$\end{document} fluorescence according to Oxborough and Baker (1997) were lower than the corresponding measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document} values. Based on the concept that calculated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document} values are under-estimated because the underlying theory ignores PSI fluorescence, a method was devised to gain relative PSI fluorescence intensities from differences between calculated and measured \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document}. This method yields fluorometer-specific PSI data as its input data (F0, FM, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{0} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F^{\prime}_{\text{M}} $$\end{document}) depend solely on the spectral properties of the fluorometer used. Under the present conditions, the PSI contribution to F0 fluorescence was 0.24 in A. thaliana and it was independent on the light acclimation status; the corresponding value was 0.50 in Z. mays. Correction for PSI fluorescence affected Z. mays most: the linear relationship between PSI and PSII photochemical yields was clearly shifted toward the one-to-one proportionality line and maximum electron transport was increased by 50 %. Further, correction for PSI fluorescence increased the PSII reaction center-specific parameter, 1/F0 − 1/FM, up to 50 % in A. thaliana and up to 400 % in Z. mays.
引用
收藏
页码:189 / 206
页数:17
相关论文
共 228 条
  • [1] Agati G(2000)The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Photochem Photobiol 72 75-84
  • [2] Cerovic ZG(1988) and Aust J Plant Physiol 15 11-26
  • [3] Moya I(2001): the role of the Photosystem I contribution to the 735 nm fluorescence band Planta 213 794-801
  • [4] Anderson JM(2004)Thylakoid membrane organisation in sun/shade acclimation Planta 218 793-802
  • [5] Chow WS(2008)Acclimation of Annu Rev Plant Biol 59 89-113
  • [6] Goodchild DJ(2007) to the light environment: the existence of separate low light and high light responses J Biol Chem 282 8947-8958
  • [7] Bailey A(1982)Acclimation of Biochim Biophys Acta 683 119-151
  • [8] Walters RG(1990) to the light environment: the relationship between photosynthetic function and chloroplast composition Photosynth Res 25 173-185
  • [9] Jansson S(2002)Chlorophyll fluorescence: a probe of photosynthesis in vivo Trends Plant Sci 7 204-210
  • [10] Horton P(1957)Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation Science 125 555-35