A Comment on the Flow and Heat Transfer Past a Permeable Stretching/Shrinking Surface in a Porous Medium: Brinkman Model

被引:0
作者
J. H. Merkin
N. Bachok
A. Ishak
I. Pop
机构
[1] University of Leeds,Department of Applied Mathematics
[2] Universiti Putra Malaysia,Department of Mathematics and Institute for Mathematical Research
[3] Universiti Kebangsaan Malaysia,School of Mathematical Science, Faculty of Science and Technology
[4] Babeş-Bolyai University,Department of Applied Mathematics
来源
Transport in Porous Media | 2014年 / 101卷
关键词
Boundary layer; Heat transfer; Suction/blowing ; Stretching/shrinking sheet; Porous Medium; Dual solutions;
D O I
暂无
中图分类号
学科分类号
摘要
An analytical solution is presented for the boundary-layer flow and heat transfer over a permeable stretching/shrinking surface embedded in a porous medium using the Brinkman model. The problem is seen to be characterized by the Prandtl number Pr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr$$\end{document}, a mass flux parameter s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}, with s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>0$$\end{document} for suction, s=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=0$$\end{document} for an impermeable surface, and s<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<0$$\end{document} for blowing, a viscosity ratio parameter M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document}, the porous medium parameter Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} and a wall velocity parameter λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. The analytical solution identifies critical values which agree with those previously determined numerically (Bachok et al. Proceedings of the fifth International Conference on Applications of Porous Media, 2013) and shows that these critical values, and the consequent dual solutions, can arise only when there is suction through the wall, s>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>0$$\end{document}.
引用
收藏
页码:365 / 371
页数:6
相关论文
共 17 条
  • [1] Cortell R(2005)Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing Fluid Dyn. Res. 37 231-245
  • [2] Harris SD(2009)Mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip Transp. Porous Media 77 267-285
  • [3] Ingham DB(2006)Steady and unsteady boundary layers due to stretching vertical surface in a porous medium using Darcy–Brinkman equation model Int. J. Appl. Mech. Eng. 11 623-6375
  • [4] Pop I(2003)The Brinkman model for the boundary layer mixed convection flow past a horizontal circular cylinder in a porous medium Int. J. Heat Mass Transf. 46 3167-3178
  • [5] Ishak A(2012)Non-Darcy mixed convection from a horizontal plate embedded in a nanofluid saturated porous media Int. Comm. Heat Mass Transf. 39 1080-1085
  • [6] Nazar R(1981)Boundary and inertia effects on flow and heat transfer in porous media Int. J. Heat Mass Transf. 24 195-203
  • [7] Pop I(undefined)undefined undefined undefined undefined-undefined
  • [8] Nazar R(undefined)undefined undefined undefined undefined-undefined
  • [9] Amin N(undefined)undefined undefined undefined undefined-undefined
  • [10] Filip D(undefined)undefined undefined undefined undefined-undefined