Protected Cells in Compositions

被引:0
作者
Margaret Archibald
Aubrey Blecher
Charlotte Brennan
Arnold Knopfmacher
机构
[1] University of the Witwatersrand (Wits),The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics
来源
Mathematics in Computer Science | 2022年 / 16卷
关键词
Compositions; Protected cells; Bargraphs; Generating functions; Primary 05A15; 05A16; Secondary;
D O I
暂无
中图分类号
学科分类号
摘要
Compositions (ordered partitions) of n are finite sequences of positive integers that sum to n. We represent a composition of n as a bargraph with area n such that the height of the i-th column of the bargraph equals the size of the i-th part of the composition. We consider the concept of protected cells and protected columns in the bargraph representation of the composition. An r-protected cell is a cell in which the shortest path to the outside has at least r+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+1$$\end{document} steps (up, down, left or right). We obtain the average number of r-protected cells and protected columns. Finally we study the total protection number of a composition and compute the mean of this quantity over all compositions of n. We define the total protection number of a composition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} to be the sum of the protection numbers of each individual cell in that composition.
引用
收藏
相关论文
共 15 条
[1]  
Cakić N(2018)Elements protected by records in set partitions J. Differ. Equ. Appl. 24 1880-1893
[2]  
Mansour T(2008)Protected points in ordered trees Appl. Math. Lett. 21 516-520
[3]  
Smith R(2017)-protected vertices in unlabeled rooted plane trees Graph Combin. 33 347-355
[4]  
Cheon GS(2012)Notes on protected nodes in digital search trees Appl. Math. Lett. 25 1025-1028
[5]  
Shapiro LW(2017)Protection number in plane trees Appl. Anal. Discrete Math. 11 314-326
[6]  
Copenhaver K(2011)Protected points in Appl. Math. Lett. 24 478-480
[7]  
Du R(2019)-ary trees Discrete Math. Lett. 1 26-29
[8]  
Prodinger H(2019)Border and tangent cells in bargraphs Austral. J. Combin. 74 169-178
[9]  
Heuberger C(undefined)Protected cells in bargraphs undefined undefined undefined-undefined
[10]  
Prodinger H(undefined)undefined undefined undefined undefined-undefined