On universality of the Lerch zeta-function

被引:0
|
作者
A. Laurinčikas
机构
[1] Vilnius University,Faculty of Mathematics and Informatics
来源
Proceedings of the Steklov Institute of Mathematics | 2012年 / 276卷
关键词
Probability Measure; STEKLOV Institute; Open Neighborhood; Random Element; Dirichlet Series;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Lerch zeta-function L(λ, α, s) with transcendental parameter α is universal in the Voronin sense; i.e., every analytic function can be approximated by shifts L(λ, α, s + iτ) uniformly on compact subsets of some region. In this paper, the universality for some classes of composite functions F(L(λ, α, s)) is obtained. In particular, general theorems imply the universality of the functions sin(L(λ, α, s)) and sinh(L(λ, α, s)).
引用
收藏
页码:167 / 175
页数:8
相关论文
共 50 条
  • [21] On the periodic zeta-function
    Kačenas A.
    Laurinčikas A.
    Lithuanian Mathematical Journal, 2001, 41 (2) : 168 - 177
  • [22] On the value distribution of the Matsumoto zeta-function
    Kacinskaite, R
    Laurincikas, A
    ACTA MATHEMATICA HUNGARICA, 2004, 105 (04) : 339 - 359
  • [23] On the value distribution of the Matsumoto zeta-function
    Roma Kačinskaite
    Antanas Laurinčikas
    Acta Mathematica Hungarica, 2004, 105 : 339 - 359
  • [24] Second moment of the Beurling zeta-function
    Paulius Drungilas
    Ramūnas Garunkštis
    Aivaras Novikas
    Lithuanian Mathematical Journal, 2019, 59 : 317 - 337
  • [25] On joint distribution of the Riemann zeta-function
    Laurincikas, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (11) : 853 - 862
  • [26] On limit distribution of the Hurwitz zeta-function
    Laurincikas, Antanas
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (04): : 786 - 794
  • [27] Second moment of the Beurling zeta-function
    Drungilas, Paulius
    Garunkstis, Ramunas
    Novikas, Aivaras
    LITHUANIAN MATHEMATICAL JOURNAL, 2019, 59 (03) : 317 - 337
  • [28] On statistical properties of the Lerch zeta-function. II
    Ignatavičiute J.
    Lithuanian Mathematical Journal, 2002, 42 (3) : 270 - 285
  • [29] Dirichlet series induced by the Riemann zeta-function
    Tanaka, Jun-Ichi
    STUDIA MATHEMATICA, 2008, 187 (02) : 157 - 184
  • [30] Remarks on the universality of the periodic zeta function
    Laurincikas, A.
    Siauciunas, D.
    MATHEMATICAL NOTES, 2006, 80 (3-4) : 532 - 538