Calculus of Variations and Partial Differential Equations
|
2005年
/
22卷
关键词:
System Theory;
Variational Integral;
Young Measure;
High Integrability;
Measure Minimizer;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We prove local higher integrability with large exponents for minimizers and Young measure minimizers of variational integrals of the form \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \int_{\Omega} \! F(x,\nabla u(x)) dx $$\end{document} where F is a Carathéodory integrand that resembles the p-Dirichlet integrand at infinity. The result yields existence of minimizing sequences with higher equi-integrability properties locally in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\Omega$\end{document}.