Higher integrability of minimizing Young measures

被引:0
|
作者
Georg Dolzmann
Jan Kristensen
机构
[1] University of Maryland,Mathematics Department
[2] University of Oxford,Mathematical Institute
来源
Calculus of Variations and Partial Differential Equations | 2005年 / 22卷
关键词
System Theory; Variational Integral; Young Measure; High Integrability; Measure Minimizer;
D O I
暂无
中图分类号
学科分类号
摘要
We prove local higher integrability with large exponents for minimizers and Young measure minimizers of variational integrals of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \int_{\Omega} \! F(x,\nabla u(x)) dx $$\end{document} where F is a Carathéodory integrand that resembles the p-Dirichlet integrand at infinity. The result yields existence of minimizing sequences with higher equi-integrability properties locally in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Omega$\end{document}.
引用
收藏
页码:283 / 301
页数:18
相关论文
共 50 条