A new kind of uniqueness theorems for inverse Sturm-Liouville problems

被引:0
作者
Yuri Ashrafyan
机构
[1] Yerevan State University,Department of Mathematics and Mechanics
来源
Boundary Value Problems | / 2017卷
关键词
inverse problem; Sturm-Liouville operator; uniqueness theorem; Ambarzumyan theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove Marchenko-type uniqueness theorems for inverse Sturm-Liouville problems. Moreover, we prove a generalization of Ambarzumyan’s theorem.
引用
收藏
相关论文
共 32 条
[1]  
Marchenko VA(1950)Concerning the theory of a differential operator of the second order Dokl. Akad. Nauk SSSR 72 457-460
[2]  
Jodeit M(1997)The isospectrality problem for the classical Sturm-Liouville equation Adv. Differ. Equ. 2 297-318
[3]  
Levitan BM(1929)Über eine frage der eigenwertsththeori Z. Phys. 53 690-695
[4]  
Ambarzumyan VA(1962)Extensions of VA Ambarzumyan theorem Dokl. Akad. Nauk 146 1259-1262
[5]  
Kuznezov NV(1988)On an extension of the theorem of VA Ambarzumyan Proc. R. Soc. Edinb. A 110 79-84
[6]  
Chakravarty NK(2001)Extension of Ambarzumyan’s theorem to general boundary conditions J. Math. Anal. Appl. 263 333-342
[7]  
Acharyya SK(2005)Corrigendum to “Extension of Ambarzumyan’s theorem to general boundary conditions” J. Math. Anal. Appl. 309 764-768
[8]  
Chern H-H(2010)Ambarzumyan’s theorems for vectorial Sturm-Liouville systems with coupled boundary conditions Taiwan. J. Math. 14 1429-1437
[9]  
Law CK(2011)New Ambarzumyan’s theorems for differential operators with operator coefficient Adv. Math. 40 749-755
[10]  
Wang H-J(2013)On Ambarzumyan-type theorems Appl. Math. Lett. 20 506-509