Interpolation Hilbert Spaces Between Sobolev Spaces

被引:0
作者
Vladimir A. Mikhailets
Aleksandr A. Murach
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
[2] National Technical University of Ukraine “Kyiv Polytechnic Institute”,undefined
[3] Chernihiv National Pedagogical University,undefined
来源
Results in Mathematics | 2015年 / 67卷
关键词
46E35; 46B70; Sobolev space; interpolation space; Hörmander space; OR-varying function; interpolation with a function parameter;
D O I
暂无
中图分类号
学科分类号
摘要
We explicitly describe all Hilbert function spaces that are interpolation spaces with respect to a given couple of Sobolev inner product spaces considered over Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n}}$$\end{document} or a half-space in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{n}}$$\end{document} or a bounded Euclidean domain with Lipschitz boundary. We prove that these interpolation spaces form a subclass of isotropic Hörmander spaces. They are parametrized with a radial function parameter which is OR-varying at + ∞ and satisfies some additional conditions. We give explicit examples of intermediate but not interpolation spaces.
引用
收藏
页码:135 / 152
页数:17
相关论文
共 15 条
[1]  
Boyd D.W.(1967)The Hilbert transform on rearrangement-invariant spaces Can. J. Math. 19 599-616
[2]  
Donoghue W.F.(1967)The interpolation of quadratic norms Acta Math. 118 251-270
[3]  
Foiaş C.(1961)Sur certains théorèmes d’interpolation Acta Sci. Math. (Szeged) 22 269-282
[4]  
Lions J.-L.(1964)On a generalization of regularly increasing functions Stud. Math. 24 271-279
[5]  
Matuszewska W.(2006)Improved scales of spaces and elliptic boundary-value problems, II Ukr. Math. J. 58 398-417
[6]  
Mikhailets V.A.(2008)Interpolation with a function parameter and refined scale of spaces Methods Funct. Anal. Topol. 14 81-100
[7]  
Murach A.A.(2012)The refined Sobolev scale, interpolation, and elliptic problems Banach J. Math. Anal. 6 211-281
[8]  
Mikhailets V.A.(1968)On interpolation functons, II Acta Sci. Math. (Szeged) 29 91-92
[9]  
Murach A.A.(1999)On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domain J. Lond. Math. Soc. 60 237-257
[10]  
Mikhailets V.A.(1967)Complex interpolation Compos. Math. 18 117-147