Global Attractors for the Three-Dimensional Tropical Climate Model with Damping Terms

被引:0
|
作者
Rongyan Mao
Hui Liu
Fahe Miao
Jie Xin
机构
[1] Qufu Normal University,School of Mathematical Sciences
[2] Shandong Agricultural University,College of Information Science and Engineering
[3] Shandong Youth University of Political Science,School of Information Engineering
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2024年 / 47卷
关键词
Global attractor; Tropical climate model; Damping terms; 35B40; 35B41; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the 3D tropical climate model with damping terms in the equation of u, v and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, respectively. Firstly, we get some uniform estimates of strong solution. Secondly, we derive the result of the continuity of the semigroup {S(t)}t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S(t)\}_{t\ge 0}$$\end{document} in case of 4≤α,β<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\le \alpha ,\beta <5$$\end{document} and 135<γ<5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{13}{5}<\gamma <5$$\end{document} via some usual inequalities. Finally, the system (1.1) is shown to possess an (V,V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},{\mathbb {V}})$$\end{document}-global attractor and an (V,H2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {V}},{\textbf{H}}^{2})$$\end{document}-global attractor.
引用
收藏
相关论文
共 47 条
  • [21] Global Well-Posedness of an Inviscid Three-Dimensional Pseudo-Hasegawa-Mima Model
    Chongsheng Cao
    Aseel Farhat
    Edriss S. Titi
    Communications in Mathematical Physics, 2013, 319 : 195 - 229
  • [22] Global regularity for the tropical climate model with fractional diffusion on barotropic mode
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2018, 81 : 99 - 104
  • [23] Regularity and Global Existence on the 3D Tropical Climate Model
    Yanan Wang
    Shuyun Zhang
    Nana Pan
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 641 - 650
  • [24] Regularity and Global Existence on the 3D Tropical Climate Model
    Wang, Yanan
    Zhang, Shuyun
    Pan, Nana
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 641 - 650
  • [25] GLOBAL ATTRACTOR FOR THE TIME DISCRETIZED MODIFIED THREE-DIMENSIONAL BENARD SYSTEMS
    Zhu, Chaosheng
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 457 - 483
  • [26] Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation
    Dong, Bo-Qing
    Wu, Jiahong
    Ye, Zhuan
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 511 - 550
  • [27] Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation
    Bo-Qing Dong
    Jiahong Wu
    Zhuan Ye
    Journal of Nonlinear Science, 2019, 29 : 511 - 550
  • [28] GLOBAL SOLUTIONS OF 3D TROPICAL CLIMATE MODEL WITH FINITE ENERGY
    Wang, Fan
    Yin, Silu
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2021, 19 (05) : 1337 - 1345
  • [29] Global Regularity for the 2D MHD and Tropical Climate Model with Horizontal Dissipation
    Marius Paicu
    Ning Zhu
    Journal of Nonlinear Science, 2021, 31
  • [30] Global regularity of 2D tropical climate model with zero thermal diffusion
    Ye, Zhuan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (07):