Finite groups with some ?-quasinormal minimal subgroups

被引:1
作者
Yangming Li
Yanming Wang
机构
[1] Guangdong College of Education,Deptartment of Mathematics
[2] Zhongshan University,Lingnan College and School of Mathematics
来源
Acta Mathematica Hungarica | 2004年 / 102卷
关键词
nilpotent group; ?-nilpotent group; saturated formation; ?-quasinormal subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
We use ?-quasinormal condition on minimal subgroups to Characterize the structure of a finite group through the theory of formation. We give some equivalent conditions of a nilpotent group or a saturated formation containing the nilpotent groups. Our results generalize earlier theorems of Yokoyama, Ballester-Bolinches and Pedraza Aguilera.
引用
收藏
页码:213 / 222
页数:9
相关论文
共 16 条
[1]  
Asaad M.(1996)A note on minimal subgroups of finite groups Communications in Algebra 24 2771-2776
[2]  
Ballester-Bolinches A.(1989)\tH-normalizers and local definitions of saturated formations of finite groups Israel J. Math. 67 312-326
[3]  
Pedraza Aguilera M. C.(1996)On minimal subgroups of finite groups Acta Math. Hungar. 73 335-342
[4]  
Ballester-Bolinches A.(1970)Finite groups whose minimal subgroups are normal Math. Z. 116 15-17
[5]  
Ballester-Bolinches A.(1985)The influence of minimal Arch. Math. 45 1-4
[6]  
Pedraza Aguilera M. C.(1997)-subgroups on the structure of finite groups Arch. Math. 68 350-366
[7]  
Buckley J.(1962)Automorphisms fixing elements of prime order in finite groups Math. Z. 78 205-221
[8]  
Derr J. B.(1990)Sylow-Gruppen und abnormalteiler endlicher Gruppen Acta. Math. Hungar. 56 287-293
[9]  
Deskins W. E.(2000)The influence of \gp-quasinormality of some subgroups Acta Math. Sinica 16 63-70
[10]  
Mukherjee N. P.(1975)The influence of minimal subgroups on the structure of finite groups Arch. Math. 26 123-130