Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation

被引:0
|
作者
Guoliang Yang
Zhengwei Hu
Jun Tang
机构
[1] Jiangxi University of Science and Technology,School of Electrical Engineering and Automation
来源
Arabian Journal for Science and Engineering | 2018年 / 43卷
关键词
Visual tracking; Incremental subspace; Particle filter; Local sparse representation; Occlusion detection;
D O I
暂无
中图分类号
学科分类号
摘要
Single target tracking is an important part of computer vision, and its robustness is always restricted by target occlusion, illumination change, target pose change and so far. To deal with this problem, this paper proposed a robust visual tracking based on incremental subspace learning and local sparse representation. The algorithm adopts local sparse representation to test occlusion and rectifies the incremental learning error according to the occlusion detection outcome and to overcome the influence of occlusion on target template. Moreover, similarity between target templates and candidate templates is computed on the basis of local sparse representation. In the frame of particle filter, target tracking is achieved by combining incremental error and similarity measurement. The experimental resulting in several challenging sequences shows that the proposed method has better performance than that of state-of-the-art tracker.
引用
收藏
页码:627 / 636
页数:9
相关论文
共 50 条
  • [41] Robust visual tracking via CAMShift and structural local sparse appearance model
    Zhao, Houqiang
    Xiang, Ke
    Cao, Songxiao
    Wang, Xuanyin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 34 : 176 - 186
  • [42] Robust Ship Tracking via Multi-view Learning and Sparse Representation
    Chen, Xinqiang
    Wang, Shengzheng
    Shi, Chaojian
    Wu, Huafeng
    Zhao, Jiansen
    Fu, Junjie
    JOURNAL OF NAVIGATION, 2019, 72 (01): : 176 - 192
  • [43] Robust visual tracking with discriminative sparse learning
    Lu, Xiaoqiang
    Yuan, Yuan
    Yan, Pingkun
    PATTERN RECOGNITION, 2013, 46 (07) : 1762 - 1771
  • [44] Sparse robust subspace learning via boolean weight
    Wang, Sisi
    Nie, Feiping
    Wang, Zheng
    Wang, Rong
    Li, Xuelong
    INFORMATION FUSION, 2023, 96 : 224 - 236
  • [45] Robust visual tracking via incremental low-rank features learning
    Zhang, Changcheng
    Liu, Risheng
    Qiu, Tianshuang
    Su, Zhixun
    NEUROCOMPUTING, 2014, 131 : 237 - 247
  • [46] ROBUST VISUAL TRACKING VIA MULTI-VIEW DISCRIMINANT BASED SPARSE REPRESENTATION
    Kang, Bin
    Liang, Dong
    Zhang, Suofei
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2587 - 2591
  • [47] Robust visual tracking via nonlocal regularized multi-view sparse representation
    Kang, Bin
    Zhu, Wei-Ping
    Liang, Dong
    Chen, Mingkai
    PATTERN RECOGNITION, 2019, 88 : 75 - 89
  • [48] Robust Object Tracking via Graph-based Transductive Learning with Subspace Representation
    Lu Ruitao
    Jing Xin
    Yang Xiaogang
    Fan Jiwei
    Chen Lu
    Li Dalei
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4852 - 4856
  • [49] Robust object tracking based on sparse representation and incremental weighted PCA
    Xiaofen Xing
    Fuhao Qiu
    Xiangmin Xu
    Chunmei Qing
    Yinrong Wu
    Multimedia Tools and Applications, 2017, 76 : 2039 - 2057
  • [50] Visual tracking based on sparse dense structure representation and online robust dictionary learning
    Yuan, Guang-Lin
    Xue, Mo-Gen
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (03): : 536 - 542