Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation

被引:0
|
作者
Guoliang Yang
Zhengwei Hu
Jun Tang
机构
[1] Jiangxi University of Science and Technology,School of Electrical Engineering and Automation
来源
Arabian Journal for Science and Engineering | 2018年 / 43卷
关键词
Visual tracking; Incremental subspace; Particle filter; Local sparse representation; Occlusion detection;
D O I
暂无
中图分类号
学科分类号
摘要
Single target tracking is an important part of computer vision, and its robustness is always restricted by target occlusion, illumination change, target pose change and so far. To deal with this problem, this paper proposed a robust visual tracking based on incremental subspace learning and local sparse representation. The algorithm adopts local sparse representation to test occlusion and rectifies the incremental learning error according to the occlusion detection outcome and to overcome the influence of occlusion on target template. Moreover, similarity between target templates and candidate templates is computed on the basis of local sparse representation. In the frame of particle filter, target tracking is achieved by combining incremental error and similarity measurement. The experimental resulting in several challenging sequences shows that the proposed method has better performance than that of state-of-the-art tracker.
引用
收藏
页码:627 / 636
页数:9
相关论文
共 50 条
  • [31] Robust Visual Tracking via Multi-Task Sparse Learning
    Zhang, Tianzhu
    Ghanem, Bernard
    Liu, Si
    Ahuja, Narendra
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 2042 - 2049
  • [32] Robust Visual Tracking via Smooth Manifold Kernel Sparse Learning
    Liu, Guangen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (11) : 2949 - 2963
  • [33] Robust Visual Tracking via Multitask Sparse Correlation Filters Learning
    Nai, Ke
    Li, Zhiyong
    Gan, Yihui
    Wang, Qi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (01) : 502 - 515
  • [34] Visual Tracking via Weighted Sparse Representation
    Duan Xiping
    Liu Jiafeng
    Tang Xianglong
    Duan Xiping
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTERNET OF THINGS, 2015, : 81 - 84
  • [35] ROBUST VISUAL TRACKING VIA GUIDED LOW-RANK SUBSPACE LEARNING
    Wang, Di
    Liu, Risheng
    Su, Zhixun
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015,
  • [36] Incremental visual tracking via sparse discriminative classifier
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    MULTIMEDIA SYSTEMS, 2021, 27 (02) : 287 - 299
  • [37] Incremental visual tracking via sparse discriminative classifier
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    Multimedia Systems, 2021, 27 : 287 - 299
  • [38] Heavy-Tailed Model for Visual Tracking via Robust Subspace Learning
    Wang, Daojing
    Zhang, Chao
    Hao, Pengwei
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 172 - 181
  • [39] VISUAL TRACKING VIA MANIFOLD REGULARIZED LOCAL STRUCTURED SPARSE REPRESENTATION MODEL
    Wang, Lingfeng
    Pan, Chunhong
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1150 - 1154
  • [40] LEARNING DICTIONARY VIA SUBSPACE SEGMENTATION FOR SPARSE REPRESENTATION
    Feng, Jianzhou
    Song, Li
    Yang, Xiaokang
    Zhang, Wenjun
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1245 - 1248