Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation

被引:0
|
作者
Guoliang Yang
Zhengwei Hu
Jun Tang
机构
[1] Jiangxi University of Science and Technology,School of Electrical Engineering and Automation
来源
Arabian Journal for Science and Engineering | 2018年 / 43卷
关键词
Visual tracking; Incremental subspace; Particle filter; Local sparse representation; Occlusion detection;
D O I
暂无
中图分类号
学科分类号
摘要
Single target tracking is an important part of computer vision, and its robustness is always restricted by target occlusion, illumination change, target pose change and so far. To deal with this problem, this paper proposed a robust visual tracking based on incremental subspace learning and local sparse representation. The algorithm adopts local sparse representation to test occlusion and rectifies the incremental learning error according to the occlusion detection outcome and to overcome the influence of occlusion on target template. Moreover, similarity between target templates and candidate templates is computed on the basis of local sparse representation. In the frame of particle filter, target tracking is achieved by combining incremental error and similarity measurement. The experimental resulting in several challenging sequences shows that the proposed method has better performance than that of state-of-the-art tracker.
引用
收藏
页码:627 / 636
页数:9
相关论文
共 50 条
  • [1] Robust Visual Tracking via Incremental Subspace Learning and Local Sparse Representation
    Yang, Guoliang
    Hu, Zhengwei
    Tang, Jun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (02) : 627 - 636
  • [2] Robust Visual Tracking with Incremental Subspace Learning Sparse Model
    Wang, Hongqing
    Xu, Tingfa
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2721 - 2728
  • [3] Robust Visual Tracking Using Incremental Sparse Representation
    Pan, Song
    Liu, Huaping
    PROCEEDINGS OF 2013 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT INFORMATION PROCESSING, 2013, 256 : 691 - 698
  • [4] Learning Local Appearances With Sparse Representation for Robust and Fast Visual Tracking
    Bai, Tianxiang
    Li, You-Fu
    Zhou, Xiaolong
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (04) : 663 - 675
  • [5] Robust visual tracking based on incremental tensor subspace learning
    Li, Xi
    Hu, Weiming
    Zhang, Zhongfei
    Zhang, Xiaoqin
    Luo, Guan
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 960 - +
  • [6] ROBUST OBJECT TRACKING VIA INCREMENTAL SUBSPACE DYNAMIC SPARSE MODEL
    Ji, Zhangjian
    Wang, Weiqiang
    Xu, Ning
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [7] Robust Visual Tracking via Patch Descriptor and Structural Local Sparse Representation
    Song, Zhiguo
    Sun, Jifeng
    Yu, Jialin
    Liu, Shengqing
    ALGORITHMS, 2018, 11 (08):
  • [8] Discriminative subspace learning with sparse representation view-based model for robust visual tracking
    Xie, Yuan
    Zhang, Wensheng
    Qu, Yanyun
    Zhang, Yinghua
    PATTERN RECOGNITION, 2014, 47 (03) : 1383 - 1394
  • [9] INCREMENTAL ROBUST LOCAL DICTIONARY LEARNING FOR VISUAL TRACKING
    Bai, Shanshan
    Liu, Risheng
    Su, Zhixun
    Zhang, Changcheng
    Jin, Wei
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [10] Robust Visual Tracking and Vehicle Classification via Sparse Representation
    Mei, Xue
    Ling, Haibin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (11) : 2259 - 2272