Positive solutions of a nonlinear parabolic equation with double variable exponents

被引:0
作者
Huashui Zhan
机构
[1] Xiamen University of Technology,School of Applied Mathematics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Nonlinear parabolic equation; Local integrability; Double variable exponents; Positive solution; 35K55; 35K92; 35K85;
D O I
暂无
中图分类号
学科分类号
摘要
The well-posedness problem of a nonlinear parabolic equation with double variable exponents is studied in this paper. This kind of nonlinear parabolic equation includes the non-Newtonian fluids equation, the polytropic filtration equation and the so-called electro-rheological fluid equation. One of the important characteristics is that there is a diffusion coefficient a(x, t) in the equation. Unlike the usual assumption a(x,t)>a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x,t)>a>0$$\end{document}, the paper only assumes a(x,t)≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x,t)\ge 0$$\end{document}. If a(x,t)|x∈∂Ω=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x,t)|_{x\in \partial \Omega }=0$$\end{document}, by choosing a(x, t) as a test function, the stability result of positive solutions can be established without the boundary value condition.
引用
收藏
相关论文
共 37 条
[1]  
Acerbi E(2002)Regularity results for stationary electrorheological fluids Arch. Ration. Mech. Anal. 164 213-259
[2]  
Mingione G(2009)Nonlinear flow through double porosity media in variable exponent Sobolev spaces Nonlinear Anal. Real World Appl. 10 2521-2530
[3]  
Amaziane B(2010)Blow-up of solutions to parabolic equations with nonstandard growth conditions J. Comput. Appl. Math. 234 2633-2645
[4]  
Pankratov L(2011)Parabolic equations with double variable nonlinearlities Math. Comput. Simul. 81 2018-2032
[5]  
Piatnitski A(2010)Renormalized solutions for a nonlinear parabolic equation with variable exponents and J. Differ. Equ. 249 1483-1515
[6]  
Antontsev S(2001)data J. Math. Anal. Appl. 263 424-446
[7]  
Shmarev S(2012)On the spaces Annali di Mat. 191 551-562
[8]  
Antontsev S(2011) and Nonlinear Anal. Real World Appl. 12 2904-2918
[9]  
Shmarev S(2015)Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity Electron. J. Differ. Equ. 46 1-21
[10]  
Bendahmane M(2011)Reaction-diffusion systems with J. Math. Anal. Appl. 377 450-463