On the best L2-approximations of functions by using wavelets

被引:0
作者
V. F. Babenko
G. S. Zhiganova
机构
[1] Dnepropetrovsk National University,Institute of Applied Mathematics and Mechanics
[2] Ukrainian National Academy of Sciences,undefined
来源
Ukrainian Mathematical Journal | 2008年 / 60卷
关键词
Entire Function; Periodic Function; Trigonometric Polynomial; Exponential Type; Multiresolution Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We deduce the exact Jackson-type inequalities for the approximations of functions ƒ ∈ L2(ℝ) in L2(ℝ) by using partial sums of wavelet series in the cases of Meyer and Shannon-Kotelnikov wavelets.
引用
收藏
页码:1307 / 1317
页数:10
相关论文
共 10 条
[1]  
Korneichuk N. P.(1962)On the exact constant in the Jackson inequality for continuous periodic functions Dokl. Akad. Nauk SSSR 145 514-515
[2]  
Chernykh N. I.(1967)On the Jackson inequality in Tr. Mat. Inst. Akad. Nauk SSSR 88 71-74
[3]  
Chernykh N. I.(1967)On the best approximation of periodic functions by trigonometric polynomials in Mat. Zametki 2 513-522
[4]  
Ibragimov I. I.(1970)Estimation of the best approximation of a summable function on the real axis by entire functions of finite powers Dokl. Akad. Nauk SSSR 194 1113-1116
[5]  
Nasibov F. G.(1988)Exact Jackson-type inequalities for periodic functions in the space Mat. Zametki 43 757-769
[6]  
Ligun A. A.(1980)Diophantine approximations in extremal problems Dokl. Akad. Nauk SSSR 251 54-57
[7]  
Yudin V. A.(1986)On the exact constant in the Jackson inequality in Mat. Zametki 39 651-664
[8]  
Babenko A. G.(1995)On the exact constants in the Jackson inequality in the space Ukr. Mat. Zh. 47 108-110
[9]  
Volchkov V. V.(2002)On the best polynomial approximations of 2π-periodic functions and exact values of Ukr. Mat. Zh. 54 1603-1615
[10]  
Vakarchuk S. B.(undefined)-widths of functional classes in the space undefined undefined undefined-undefined