Generalized Lyapunov inequalities involving critical Sobolev exponents

被引:0
作者
H. J. Kwon
S. A. Timoshin
机构
[1] PMI,
[2] Institute of Systems Dynamics and Control Theory,undefined
来源
Siberian Mathematical Journal | 2012年 / 53卷
关键词
elliptic equations; critical exponent; Lyapunov inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Lyapunov-type inequalities generalizing the famous inequality that gives a necessary condition for the existence of solutions to a boundary value problem for a second order ordinary differential equation. For certain critical cases, when the inequalities are strict, we study the asymptotic behavior of minimizing sequences.
引用
收藏
页码:691 / 701
页数:10
相关论文
共 12 条
  • [1] Cañada A.(2005)Lyapunov-type inequalities and Neumann boundary value problems at resonance Math. Inequal. Appl. 8 459-475
  • [2] Montero J. A.(2006)Lyapunov inequalities for partial differential equations J. Funct. Anal. 237 176-193
  • [3] Villegas S.(2010)Lyapunov inequality for elliptic equations involving limiting nonlinearities Proc. Japan Acad. Ser. A 86 139-142
  • [4] Cañada A.(1991)Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8 159-174
  • [5] Montero J. A.(1989)Proof of two conjectures of H. Brézis and L. A. Peletier Manuscripta Math. 65 19-37
  • [6] Villegas S.(1985)The concentration-compactness principle in the calculus of variations. The limit case Rev. Mat. Iberoamericana 1 145-201
  • [7] Timoshin S. A.(1970)A sharp form of an inequality by N. Trudinger Indiana Univ. Math. J. 20 1077-1092
  • [8] Han Z.-C.(2006)Remarks on the extremal functions for the Moser-Trudinger inequality Acta Math. Sin. (Engl. Ser.) 22 545-550
  • [9] Rey O.(undefined)undefined undefined undefined undefined-undefined
  • [10] Lions P.-L.(undefined)undefined undefined undefined undefined-undefined