A sparse Laplacian in tensor product wavelet coordinates

被引:0
作者
Tammo Jan Dijkema
Rob Stevenson
机构
[1] Utrecht University,Department of Mathematics
[2] University of Amsterdam,Korteweg
来源
Numerische Mathematik | 2010年 / 115卷
关键词
Sparse representations; Tensor product approximation; Adaptive wavelet scheme; Riesz bases; Cubic Hermite splines; 15A12; 15A69; 41A15; 41A25; 65N99; 65F50; 65T60;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a wavelet basis on the unit interval with respect to which both the (infinite) mass and stiffness matrix corresponding to the one-dimensional Laplacian are (truly) sparse and boundedly invertible. As a consequence, the (infinite) stiffness matrix corresponding to the Laplacian on the n-dimensional unit box with respect to the n-fold tensor product wavelet basis is also sparse and boundedly invertible. This greatly simplifies the implementation and improves the quantitative properties of an adaptive wavelet scheme to solve the multi-dimensional Poisson equation. The results extend to any second order partial differential operator with constant coefficients that defines a boundedly invertible operator.
引用
收藏
页码:433 / 449
页数:16
相关论文
共 17 条
  • [1] Bungartz H.(2004)Sparse grids Acta Numer. 13 147-269
  • [2] Griebel M.(2001)Adaptive wavelet methods for elliptic operator equations—convergence rates Math. Comput. 70 27-75
  • [3] Cohen A.(1993)Wavelet-Galerkin methods: an adapted biorthogonal wavelet basis Constr. Approx. 9 237-262
  • [4] Dahmen W.(1996)Stability of multiscale transformations J. Fourier Anal. Appl. 4 341-362
  • [5] DeVore R.(1997)Wavelet and multiscale methods for operator equations Acta Numer. 6 55-228
  • [6] Dahlke S.(1999)Element-by-element construction of wavelets satisfying stability and moment conditions SIAM J. Numer. Anal. 37 319-352
  • [7] Weinreich I.(2009)An adaptive wavelet method for solving high-dimensional elliptic PDEs Constr. Approx. 30 423-455
  • [8] Dahmen W.(2007)An optimal adaptive wavelet method without coarsening of the iterands Math. Comput. 76 615-629
  • [9] Dahmen W.(undefined)undefined undefined undefined undefined-undefined
  • [10] Dahmen W.(undefined)undefined undefined undefined undefined-undefined