Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations

被引:0
|
作者
Payel Das
Tom Sercu
Kahini Wadhawan
Inkit Padhi
Sebastian Gehrmann
Flaviu Cipcigan
Vijil Chenthamarakshan
Hendrik Strobelt
Cicero dos Santos
Pin-Yu Chen
Yi Yan Yang
Jeremy P. K. Tan
James Hedrick
Jason Crain
Aleksandra Mojsilovic
机构
[1] IBM Thomas J. Watson Research Center,Department of Applied Physics and Mathematics
[2] Columbia University,Department of Biochemistry
[3] Harvard John A. Paulson School of Engineering and Applied Sciences,undefined
[4] IBM Research Europe,undefined
[5] The Hartree Centre STFC Laboratory,undefined
[6] IBM Research,undefined
[7] MIT-IBM Watson AI Lab,undefined
[8] Institute of Bioengineering and Nanotechnology,undefined
[9] IBM Research,undefined
[10] Almaden Research Center,undefined
[11] University of Oxford,undefined
[12] Facebook AI Research,undefined
[13] Amazon Web Services,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The de novo design of antimicrobial therapeutics involves the exploration of a vast chemical repertoire to find compounds with broad-spectrum potency and low toxicity. Here, we report an efficient computational method for the generation of antimicrobials with desired attributes. The method leverages guidance from classifiers trained on an informative latent space of molecules modelled using a deep generative autoencoder, and screens the generated molecules using deep-learning classifiers as well as physicochemical features derived from high-throughput molecular dynamics simulations. Within 48 days, we identified, synthesized and experimentally tested 20 candidate antimicrobial peptides, of which two displayed high potency against diverse Gram-positive and Gram-negative pathogens (including multidrug-resistant Klebsiella pneumoniae) and a low propensity to induce drug resistance in Escherichia coli. Both peptides have low toxicity, as validated in vitro and in mice. We also show using live-cell confocal imaging that the bactericidal mode of action of the peptides involves the formation of membrane pores. The combination of deep learning and molecular dynamics may accelerate the discovery of potent and selective broad-spectrum antimicrobials.
引用
收藏
页码:613 / 623
页数:10
相关论文
共 50 条
  • [1] Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Das, Payel
    Sercu, Tom
    Wadhawan, Kahini
    Padhi, Inkit
    Gehrmann, Sebastian
    Cipcigan, Flaviu
    Chenthamarakshan, Vijil
    Strobelt, Hendrik
    dos Santos, Cicero
    Chen, Pin-Yu
    Yang, Yi Yan
    Tan, Jeremy P. K.
    Hedrick, James
    Crain, Jason
    Mojsilovic, Aleksandra
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 613 - +
  • [2] Author Correction: Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations
    Payel Das
    Tom Sercu
    Kahini Wadhawan
    Inkit Padhi
    Sebastian Gehrmann
    Flaviu Cipcigan
    Vijil Chenthamarakshan
    Hendrik Strobelt
    Cicero dos Santos
    Pin-Yu Chen
    Yi Yan Yang
    Jeremy P. K. Tan
    James Hedrick
    Jason Crain
    Aleksandra Mojsilovic
    Nature Biomedical Engineering, 2021, 5 : 942 - 942
  • [3] Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations (vol 5, pg 613, 2021)
    Das, Payel
    Sercu, Tom
    Wadhawan, Kahini
    Padhi, Inkit
    Gehrmann, Sebastian
    Cipcigan, Flaviu
    Chenthamarakshan, Vijil
    Strobelt, Hendrik
    dos Santos, Cicero
    Chen, Pin-Yu
    Yang, Yi Yan
    Tan, Jeremy P. K.
    Hedrick, James
    Crain, Jason
    Mojsilovic, Aleksandra
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (08) : 942 - 942
  • [4] Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation
    Fuhr, Addis S.
    Sumpter, Bobby G.
    FRONTIERS IN MATERIALS, 2022, 9
  • [5] Molecular design in drug discovery: a comprehensive review of deep generative models
    Cheng, Yu
    Gong, Yongshun
    Liu, Yuansheng
    Song, Bosheng
    Zou, Quan
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [6] Accelerated rational PROTAC design via deep learning and molecular simulations
    Zheng, Shuangjia
    Tan, Youhai
    Wang, Zhenyu
    Li, Chengtao
    Zhang, Zhiqing
    Sang, Xu
    Chen, Hongming
    Yang, Yuedong
    NATURE MACHINE INTELLIGENCE, 2022, 4 (09) : 739 - 748
  • [7] Accelerated rational PROTAC design via deep learning and molecular simulations
    Shuangjia Zheng
    Youhai Tan
    Zhenyu Wang
    Chengtao Li
    Zhiqing Zhang
    Xu Sang
    Hongming Chen
    Yuedong Yang
    Nature Machine Intelligence, 2022, 4 : 739 - 748
  • [8] Generative chemistry: drug discovery with deep learning generative models
    Bian, Yuemin
    Xie, Xiang-Qun
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (03)
  • [9] Generative chemistry: drug discovery with deep learning generative models
    Yuemin Bian
    Xiang-Qun Xie
    Journal of Molecular Modeling, 2021, 27
  • [10] Integrating deep learning and molecular dynamics simulations for FXR antagonist discovery
    Yang, Yueying
    Huang, Yuxin
    Shen, Hanxiao
    Wang, Ding
    Liu, Zhen
    Zhu, Wei
    Liu, Qing
    MOLECULAR DIVERSITY, 2025,