Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach

被引:0
|
作者
Saeed Kayhanian
Adam M. H. Young
Chaitanya Mangla
Ibrahim Jalloh
Helen M. Fernandes
Matthew R. Garnett
Peter J. Hutchinson
Shruti Agrawal
机构
[1] University of Cambridge,Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke’s Hospital
[2] University of Cambridge,Fitzwilliam College
[3] University of Cambridge,Department of Computer Science and Technology
[4] University of Cambridge,Department of Paediatric Intensive Care, Addenbrooke’s Hospital
来源
Pediatric Research | 2019年 / 86卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:641 / 645
页数:4
相关论文
共 50 条
  • [1] Correction: Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach
    Saeed Kayhanian
    Adam M. H. Young
    Chaitanya Mangla
    Ibrahim Jalloh
    Helen M. Fernandes
    Matthew R. Garnett
    Peter J. Hutchinson
    Shruti Agrawal
    Pediatric Research, 2019, 86 : 675 - 675
  • [2] Modelling outcomes after paediatric brain injury with admission laboratory values: a machine-learning approach (vol 86, pg 675, 2019)
    Kayhanian, Saeed
    Young, Adam M. H.
    Mangla, Chaitanya
    Jalloh, Ibrahim
    Fernandes, Helen M.
    Garnett, Matthew R.
    Hutchinson, Peter J.
    Agrawal, Shruti
    PEDIATRIC RESEARCH, 2019, 86 (05) : 675 - 675
  • [3] A Machine-Learning Approach to Predicting Smoking Cessation Treatment Outcomes
    Coughlin, Lara N.
    Tegge, Allison N.
    Sheffer, Christine E.
    Bickel, Warren K.
    NICOTINE & TOBACCO RESEARCH, 2020, 22 (03) : 415 - 422
  • [4] Rapid Prediction of Brain Injury Pattern in mTBI by Combining FE Analysis With a Machine-Learning Based Approach
    Shim, Vickie B.
    Holdsworth, Samantha
    Champagne, Allen A.
    Coverdale, Nicole S.
    Cook, Douglas J.
    Lee, Tae-Rin
    Wang, Alan D.
    Li, Shaofan
    Fernandez, Justin W.
    IEEE ACCESS, 2020, 8 (179457-179465) : 179457 - 179465
  • [5] A supervised machine-learning approach towards geochemical predictive modelling in archaeology
    Oonk, Stijn
    Spijker, Job
    JOURNAL OF ARCHAEOLOGICAL SCIENCE, 2015, 59 : 80 - 88
  • [6] MACHINE LEARNING-BASED PREDICTION OF FOUR TYPES OF OUTCOMES AFTER TRAUMATIC BRAIN INJURY USING DATA AT ADMISSION: A MULTICENTER STUDY
    Matsuo, Kazuya
    Aihara, Hideo
    Hara, Yoshie
    Morishita, Akitsugu
    Sakagami, Yoshio
    Miyake, Shigeru
    Tatsumi, Shotaro
    Ishihara, Satoshi
    Tohma, Yoshiki
    Yamashita, Haruo
    Sasayama, Takashi
    JOURNAL OF NEUROTRAUMA, 2023, 40 (15-16) : A47 - A48
  • [7] Early predictive values of clinical assessments for ARDS mortality: a machine-learning approach
    Ding, Ning
    Nath, Tanmay
    Damarla, Mahendra
    Gao, Li
    Hassoun, Paul M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [8] A model for predicting 7-day pressure injury outcomes in paediatric patients: A machine learning approach
    Chun, Xiao
    Pan, Liyan
    Lin, Yan
    Ye, Liyan
    Liang, Huiying
    Tao, Jianping
    Luo, Yi
    JOURNAL OF ADVANCED NURSING, 2021, 77 (03) : 1304 - 1314
  • [9] Modelling early recovery patterns after paediatric traumatic brain injury
    Forsyth, Rob J.
    Salorio, Cynthia F.
    Christensen, James R.
    ARCHIVES OF DISEASE IN CHILDHOOD, 2010, 95 (04) : 266 - 270
  • [10] Predicting key educational outcomes in academic trajectories: a machine-learning approach
    Musso, Mariel F.
    Hernandez, Carlos Felipe Rodriguez
    Cascallar, Eduardo C.
    HIGHER EDUCATION, 2020, 80 (05) : 875 - 894