Variational approach to the solution of linear multiparameter eigenvalue problems

被引:0
作者
B. M. Podlevs’kyi
机构
[1] Ukrainian National Academy of Sciences,Institute of Applied Problems in Mechanics and Mathematics
来源
Ukrainian Mathematical Journal | 2009年 / 61卷
关键词
Stationary Point; Eigenvalue Problem; Spectral Parameter; Variational Approach; Real Euclidean Space;
D O I
暂无
中图分类号
学科分类号
摘要
We associate a multiparameter spectral problem in a real Euclidean space with a variational problem of finding a minimum of a certain functional. We establish the equivalence of the spectralproblem and the variational problem. On the basis of the gradient procedure, we propose a numerical algorithm for the determination of its eigenvalues and eigenvectors. The local convergence of the algorithm is proved.
引用
收藏
页码:1475 / 1486
页数:11
相关论文
共 50 条
[41]   A variational approach to boundary elements - two dimensional Helmholtz problems [J].
Kagawa, Y ;
Sun, Y ;
Chai, L .
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2003, 16 (06) :493-508
[42]   Continuity of the first eigenvalue for a family of degenerate eigenvalue problems [J].
Farcaseanu, Maria ;
Mihailescu, Mihai .
ARCHIV DER MATHEMATIK, 2016, 107 (06) :659-667
[43]   Eigenvalue and "twisted" eigenvalue problems, applications to CMC surfaces [J].
Barbosa, L ;
Bérard, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (05) :427-450
[44]   Continuity of the first eigenvalue for a family of degenerate eigenvalue problems [J].
Maria Fărcăşeanu ;
Mihai Mihăilescu .
Archiv der Mathematik, 2016, 107 :659-667
[45]   A fast eigenvalue approach for solving the trust region subproblem with an additional linear inequality [J].
Salahi, M. ;
Taati, A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (01) :329-347
[46]   A fast eigenvalue approach for solving the trust region subproblem with an additional linear inequality [J].
M. Salahi ;
A. Taati .
Computational and Applied Mathematics, 2018, 37 :329-347
[47]   ANALYSIS OF DISCRETE-TIME LINEAR SWITCHED SYSTEMS: A VARIATIONAL APPROACH [J].
Monovich, Tal ;
Margaliot, Michael .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) :808-829
[48]   Vibration analysis of linear coupled thermoviscoelastic thin plates by a variational approach [J].
Zhang, Neng-Hui ;
Xing, Jing-Jing .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2008, 45 (09) :2583-2597
[49]   ON THE MULTIPLICATIVE INVERSE EIGENVALUE PROBLEMS [J].
张玉海 .
Numerical Mathematics A Journal of Chinese Universities(English Series), 2003, (01) :31-42
[50]   Fractional eigenvalue problems on RN [J].
Grecu, Andrei .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (26) :1-17