Tensile bifurcations in a truncated hemispherical thin elastic shell

被引:0
|
作者
Ciprian D. Coman
机构
[1] University of Huddersfield,School of Computing and Engineering
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Wrinkling; Boundary layers; Shallow shell equations; Matched asymptotics; 74K25; 74G60; 34D15; 34B09;
D O I
暂无
中图分类号
学科分类号
摘要
The work described in this paper is concerned with providing a rational asymptotic analysis of the wrinkling bifurcation experienced by a thin elastic hemispherical segment subjected to vertical tensile forces on its upper rim. This is achieved by considering the interplay between two boundary layers and matching the corresponding solutions associated with each separate region. Our key result is a four-term asymptotic formula for the critical load in terms of a small parameter proportional to the ratio between the thickness and the radius of the shell. Comparisons of this formula with direct numerical simulations provide further insight into the range of validity of the results derived herein.
引用
收藏
相关论文
共 40 条
  • [11] Wrinkling control and microstructure of 7075 aluminum alloy hemispherical shell in gradient ultra-low temperature forming
    Fan, Xiaobo
    Qiao, Ke
    Chen, Xianshuo
    Yuan, Shijian
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 129 (5-6): : 2227 - 2239
  • [12] Wrinkling control and microstructure of 7075 aluminum alloy hemispherical shell in gradient ultra-low temperature forming
    Xiaobo Fan
    Ke Qiao
    Xianshuo Chen
    Shijian Yuan
    The International Journal of Advanced Manufacturing Technology, 2023, 129 (5-6) : 2227 - 2239
  • [13] On some approximate methods for the tensile instabilities of thin annular plates
    Coman, Ciprian D.
    Haughton, David M.
    JOURNAL OF ENGINEERING MATHEMATICS, 2006, 56 (01) : 79 - 99
  • [14] On Some Approximate Methods for the Tensile Instabilities of Thin Annular Plates
    Ciprian D. Coman
    David M. Haughton
    Journal of Engineering Mathematics, 2006, 56 : 79 - 99
  • [15] Orthotropic rotation-free thin shell elements
    Gautam Munglani
    Roman Vetter
    Falk K. Wittel
    Hans J. Herrmann
    Computational Mechanics, 2015, 56 : 785 - 793
  • [16] Orthotropic rotation-free thin shell elements
    Munglani, Gautam
    Vetter, Roman
    Wittel, Falk K.
    Herrmann, Hans J.
    COMPUTATIONAL MECHANICS, 2015, 56 (05) : 785 - 793
  • [17] Elastic stabilization of wrinkles in thin films by auxetic microstructure
    Bonfanti, Alessandra
    Bhaskar, Atul
    EXTREME MECHANICS LETTERS, 2019, 33
  • [18] A model problem for boundary layers of thin elastic shells
    Karamian, P
    Sanchez-Hubert, J
    Palencia, É
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01): : 1 - 30
  • [19] Boundary layers in thin elastic shells with developable middle surface
    Karamian, P
    Sanchez-Hubert, J
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2002, 21 (01) : 13 - 47
  • [20] ASYMPTOTIC ANALYSIS OF AN ELASTIC MATERIAL REINFORCED WITH THIN FRACTAL STRIPS
    El Jarroudi, Mustapha
    Filali, Youness
    Lahrouz, Aadil
    Er-Riani, Mustapha
    Settati, Adel
    NETWORKS AND HETEROGENEOUS MEDIA, 2022, 17 (01) : 47 - 72