The one-dimensional wave equation with general boundary conditions

被引:0
|
作者
Edgardo Alvarez-Pardo
Mahamadi Warma
机构
[1] University of Puerto Rico,Department of Mathematics, Faculty of Natural Sciences
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
35L05; 35L90; 47D06; 47D09; Wave equation; Cosine and sine families; Nonlocal Robin boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a realization of the Laplace operator Au := u′′ with general nonlocal Robin boundary conditions αju′(j) + βju(j) + γ1–ju(1 − j) = 0, (j = 0, 1) generates a cosine family on Lp(0, 1) for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\,{\in}\,[1,\infty)}$$\end{document}. Here αj, βj and γj are complex numbers satisfying α0, α1 ≠ 0. We also obtain an explicit representation of local solutions to the associated wave equation by using the classical d’Alembert’s formula.
引用
收藏
页码:177 / 186
页数:9
相关论文
共 50 条
  • [41] Absorbing boundary conditions for the one-dimensional Schrodinger equation with an exterior repulsive potential
    Antoine, Xavier
    Besse, Christophe
    Klein, Pauline
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (02) : 312 - 335
  • [42] TRANSPARENT AND ARTIFICIAL BOUNDARY-CONDITIONS FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION
    BRUNEAU, CH
    DIMENZA, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (01): : 89 - 94
  • [43] STUDY ON ONE-DIMENSIONAL CONSOLIDATION THEORY OF UNSATURATED SOIL WITH GENERAL BOUNDARY CONDITIONS
    Qin A.-F.
    Zheng Q.-Q.
    Jiang L.-H.
    Gongcheng Lixue/Engineering Mechanics, 2024, (03): : 63 - 72
  • [44] Nonisotropic spatiotemporal chaotic vibrations of the one-dimensional wave equation with a mixing transport term and general nonlinear boundary condition
    Li, Liangliang
    Chen, Yuanlong
    Huang, Yu
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [45] PERTURBATION THEORY FOR THE ONE-DIMENSIONAL WAVE EQUATION
    PRICE, PJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1954, 67 (412): : 383 - 385
  • [46] A ONE-DIMENSIONAL WAVE EQUATION FOR HYDROGEN BONDS
    NORDMAN, CE
    LIPSCOMB, WN
    JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (11): : 2077 - 2078
  • [47] Optimal Observation of the One-dimensional Wave Equation
    Yannick Privat
    Emmanuel Trélat
    Enrique Zuazua
    Journal of Fourier Analysis and Applications, 2013, 19 : 514 - 544
  • [48] DERIVATION OF THE ONE-DIMENSIONAL WAVE-EQUATION
    GAUTHIER, N
    AMERICAN JOURNAL OF PHYSICS, 1987, 55 (05) : 477 - 477
  • [49] Optimal Observation of the One-dimensional Wave Equation
    Privat, Yannick
    Trelat, Emmanuel
    Zuazua, Enrique
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (03) : 514 - 544
  • [50] STRICHARTZ ESTIMATES FOR THE ONE-DIMENSIONAL WAVE EQUATION
    Donninger, Roland
    Glogic, Irfan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (06) : 4051 - 4083