The Compressed Annihilator Graph of a Commutative Ring

被引:0
作者
Sh. Payrovi
S. Babaei
机构
[1] Imam Khomeini International University,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2018年 / 49卷
关键词
Annihilator graph; compressed annihilator graph; zero divisor graph; 2-Absorbing ideal;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring. In this paper, we introduce and study the compressed annihilator graph of R. The compressed annihilator graph of R is the graph AGE(R), whose vertices are equivalence classes of zero-divisors of R and two distinct vertices [x] and [y] are adjacent if and only if ann(x)∪ann(y) ⊂ ann(xy). For a reduced ring R, we show that compressed annihilator graph of R is identical to the compressed zero-divisor graph of R if and only if 0 is a 2-absorbing ideal of R. As a consequence, we show that an Artinian ring R is either local or reduced whenever 0 is a 2-absorbing ideal of R.
引用
收藏
页码:177 / 186
页数:9
相关论文
共 12 条
[1]  
Anderson D. F.(2012)Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph J.^Pure Appl. Algebra 216 1626-1636
[2]  
LaGrange J. D.(1999)The zero-divisor graph of a commutative ring J. Algebra 217 434-447
[3]  
Anderson D. F.(2007)On 2-absorbing ideals of commutative rings Bull. Austral. Math. Soc. 75 417-429
[4]  
Livingston P. S.(2014)On the annihilator graph of a commutative ring Comm. Algebra 42 108-121
[5]  
Badawi A.(1988)Coloring of commutative rings J. Algebra 116 208-226
[6]  
Badawi A.(2002)Cycles and symmetries of zero-divisors Comm. Algebra 30 3533-3558
[7]  
Beck I.(2013)On the 2-absorbing ideals in commutative rings Bull. Malaysian Math. Sci. Soc. 23 1511-1526
[8]  
Mulay S. B.(2011)A zero divisor graph determine by equivalence classes of zero divisors Comm. Algebra 39 2338-2348
[9]  
Payrovi Sh.(undefined)undefined undefined undefined undefined-undefined
[10]  
Babaei S.(undefined)undefined undefined undefined undefined-undefined