Finite Solvable Groups with Few Non-cyclic Subgroups

被引:0
|
作者
Wei Meng
机构
[1] Yunnan Minzu University,School of Mathematics and Computer Science
关键词
Cyclic subgroups; Conjugacy class; Classification; 20D10; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)$$\end{document} denote the number of conjugate classes of allnon-cyclic subgroups of G. The symbol π(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi (G)$$\end{document} denotes the set of the prime divisors of |G|. In Meng and Li (Sci Sin Math 44:939–944, 2014), it was proved that for a finite non-cyclic solvable group G, one always has δ(G)≥2|π(G)|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\ge 2^{|\pi (G)|-2}$$\end{document}. The groups with δ(G)≤|π(G)|+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)\le |\pi (G)|+1$$\end{document} always are solvable and have been complete classified. Moreover, it was showed that a finite non-solvable group G with δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document} is isomorphic to A5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_5$$\end{document} or SL(2, 5). In this paper, we investigate the finite solvable groups with δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document}. For convenience, a group G is said to be a δπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \pi _2$$\end{document}-group if δ(G)=|π(G)|+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (G)=|\pi (G)|+2$$\end{document}. In particular, we give a completely classification of the δπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \pi _2$$\end{document}-groups with |π(G)|=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\pi (G)|=3,4$$\end{document}.
引用
收藏
页码:1221 / 1226
页数:5
相关论文
共 50 条