Two double inequalities for k-gamma and k-Riemann zeta functions

被引:0
作者
Jing Zhang
Huan-Nan Shi
机构
[1] Beijing Union University,Basic Courses Department
[2] Teacher’s College,Department of Electronic Information
[3] Beijing Union University,undefined
来源
Journal of Inequalities and Applications | / 2014卷
关键词
majorization; Schur convexity; -gamma function; -Riemann zeta function; Apéry’s constant; log-convexity;
D O I
暂无
中图分类号
学科分类号
摘要
By using methods in the theory of majorization, a double inequality for the gamma function is extended to the k-gamma function and the k-Riemann zeta function.
引用
收藏
相关论文
共 13 条
  • [1] Nguyen VV(2009)An inequality for the gamma function Int. Math. Forum 4 1379-1382
  • [2] Ngo PNN(2007)On hypergeometric functions and Pochhammer Divulg. Mat 15 179-192
  • [3] Díaz R(2013)-symbol Matematiche 68 13-22
  • [4] Pariguan E(2005)Some properties of the J. Nonlinear Math. Phys 12 118-134
  • [5] Kokologiannaki CG(1979)-gamma function Math. Intell 1 195-203
  • [6] Krasniqi V(2009)-Generalized gamma and beta functions Int. Ser. Numer. Math 157 245-250
  • [7] Díaz R(1997)A proof that Euler missed Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat 8 114-119
  • [8] Teruel C(1998)Schur-convexity, gamma functions, and moments Aequ. Math 55 273-280
  • [9] van der Poorten A(undefined)On log-convexity of a ratio of gamma functions undefined undefined undefined-undefined
  • [10] Marshall AW(undefined)Conditions for convexity of a derivative and some applications to the gamma function undefined undefined undefined-undefined