Mean ergodicity of composition operators on Hardy space

被引:0
作者
Shi-An Han
Ze-Hua Zhou
机构
[1] Civil Aviation University of China,College of Science
[2] Tianjin University,School of Mathematics
来源
Proceedings - Mathematical Sciences | 2019年 / 129卷
关键词
Composition operator; mean ergodic; Hardy space; 47B33; 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we investigate the mean ergodicity of composition operators acting on the Hardy space Hp(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p({\mathbb {D}})$$\end{document}, 1≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le p<\infty $$\end{document}. Specifically, a composition operator Cφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\varphi $$\end{document} acting on Hp(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p({\mathbb {D}})$$\end{document} is mean ergodic if and only if φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} has an interior fixed point, in which case Cφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_\varphi $$\end{document} is uniformly mean ergodic if and only if φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is an elliptic automorphism of finite order or a non-automorphism that is not inner.
引用
收藏
相关论文
共 27 条
  • [1] Albanese AA(2009)Mean ergodic operators in Fréchet spaces Ann. Acad. Sci. Fenn. Math. 34 401-436
  • [2] Bonet J(2009)Isometries and spectra of multiplication operators on the Bloch space Bull. Austral. Math. Soc. 79 147-160
  • [3] Ricker WJ(2011)A note on mean ergodic composition operators on spaces of holomorphic functions Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 105 389-396
  • [4] Allen RF(2016)Mean ergodic composition operators on Banach spaces of holomorphic functions J. Funct. Anal. 270 4369-4385
  • [5] Colonna F(2016)Mean ergodicity of weighted composition operators on spaces of holomorphic functions J. Math. Anal. Appl. 444 1640-1651
  • [6] Bonet José(2009)Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions Arch. Math. 92 428-437
  • [7] Domański Paweł(2001)Ergodic characterizations of reflexivity of Banach spaces J. Funct. Anal. 187 146-162
  • [8] Beltrán-Meneu MJ(1974)On the uniform ergodic theorem Proc. Amer. Math. Soc. 43 337-340
  • [9] Gómez-Collado MC(1939)Means of iterated transformations in reflexive vector spaces Bull. Amer. Math. Soc. 45 945-947
  • [10] Jordá E(1938)Some mean ergodic theorems J. London Math. Soc. 1 274-278