Sum of higher divisor function with prime summands

被引:0
作者
Yuchen Ding
Guang-Liang Zhou
机构
[1] Yangzhou University,School of Mathematical Science
[2] Tongji University,School of Mathematical Science
来源
Czechoslovak Mathematical Journal | 2023年 / 73卷
关键词
higher divisor function; circle method; prime; 11N37; 11A41; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let l ≽ 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {n_1},{n_2},...,{n_1} \leqslant {x^{1/2}}} {{\tau _k}(n_1^2 + n_2^2 + ... + n_1^2),} $$\end{document} where τk (n) represents the kth divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{1 \leqslant {p_1},p2,...,{p_1} \leqslant x} {{\tau _k}({p_1} + {p_2} + ... + {p_l}),} $$\end{document} where p1, p2, …, pl are prime variables.
引用
收藏
页码:621 / 631
页数:10
相关论文
共 22 条
[1]  
Bellman R(1950)Ramanujan sums and the average value of arithmetic functions Duke Math. J. 17 159-168
[2]  
Calderón C(2000)On divisors of a quadratic form Bol. Soc. Bras. Mat., Nova Sér. 31 81-91
[3]  
de Velasco M J(1992)The divisor problem for arithmetic progressions with small modulus Acta Arith. 61 35-50
[4]  
Chace C E(1994)Writing integers as sums of products Trans. Am. Math. Soc. 345 367-379
[5]  
Chace C E(1985)On the sum of the number of divisors of a quadratic form Dokl. Akad. Nauk Tadzh. SSR 28 371-375
[6]  
Gafurov N(1993)On the number of divisors of a quadratic form Proc. Steklov Inst. Math. 200 137-148
[7]  
Gafurov N(2012)Some problems about the ternary quadratic form Acta Arith. 156 101-121
[8]  
Guo R(1958)On the representation of a number as the sum of a square and a product Math. Z. 69 211-227
[9]  
Zhai W(1963)On the number of divisors of a quadratic polynomials Acta Math. 110 97-114
[10]  
Hooley C(2021)Sums of higher divisor functions J. Number Theory 220 61-74